1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanzania [10]
3 years ago
14

Brenda throws a dart at this square-shaped target: A square is shown with sides labeled 11. A shaded circle is shown in the cent

er of the square. The diameter of the circle is 2. Part A: Is the probability of hitting the black circle inside the target closer to 0 or 1? Explain your answer and show your work. (5 points) Part B: Is the probability of hitting the white portion of the target closer to 0 or 1? Explain your answer and show your work. (5 points)
Mathematics
1 answer:
kolbaska11 [484]3 years ago
8 0
Area of the square  = 11*11 = 121 
Area of the circle  = pi r^2 = pi*1^2 =  3.142
Part A
P( hitting the circle = 3.142 / 121  =  0.026 which is closer to 0.
Part B.
P(  hitting the white portion)  = 1 - 0.026 = 0.974 which is closer to 1.

You might be interested in
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
2 years ago
after spending 7/9 of a three hours examination, a student left the exams hall. How many minutes has he to complete the duration
Montano1993 [528]
40 mins left! total time= 60 mins x 3 hours =180 mins. 180 divided by 9 is 20. 20 times 7 is 140. 180-140 equals 40. yay!
6 0
2 years ago
A. C+7&lt;_3<br> B. C - 3 &gt; 1<br> C. C - 7&lt; 3
olga_2 [115]

c + 7 <  3
8 0
3 years ago
If x = a cosθ and y = b sinθ , find second derivative
Olin [163]

I'm guessing the second derivative is for <em>y</em> with respect to <em>x</em>, i.e.

\dfrac{\mathrm d^2y}{\mathrm dx^2}

Compute the first derivative. By the chain rule,

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm d\theta}\dfrac{\mathrm d\theta}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm d\theta}}{\frac{\mathrm dx}{\mathrm d\theta}}

We have

y=b\sin\theta\implies\dfrac{\mathrm dy}{\mathrm d\theta}=b\cos\theta

x=a\cos\theta\implies\dfrac{\mathrm dx}{\mathrm d\theta}=-a\sin\theta

and so

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{b\cos\theta}{-a\sin\theta}=-\dfrac ba\cot\theta

Now compute the second derivative. Notice that \frac{\mathrm dy}{\mathrm dx} is a function of \theta; so denote it by f(\theta). Then

\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm df}{\mathrm dx}

By the chain rule,

\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm df}{\mathrm d\theta}\dfrac{\mathrm d\theta}{\mathrm dx}=\dfrac{\frac{\mathrm df}{\mathrm d\theta}}{\frac{\mathrm dx}{\mathrm d\theta}}

We have

f=-\dfrac ba\cot\theta\implies\dfrac{\mathrm df}{\mathrm d\theta}=\dfrac ba\csc^2\theta

and so the second derivative is

\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\frac ba\csc^2\theta}{-a\sin\theta}=-\dfrac b{a^2}\csc^3\theta

4 0
3 years ago
The width of a box is 12 cm. The length of the box is two times the width. The height is 10 cm longer than the length. What is t
Ivenika [448]

12 x 24= 288     288 x 10 = 2,880    2,880 cubic centimeters

8 0
3 years ago
Read 2 more answers
Other questions:
  • 13+(3n) when n is 4.n=4
    13·2 answers
  • 3. MGSE9-12.N.RN.3 Which statement is true about the value of 5(6 + √9)?
    14·1 answer
  • A ray is a defined term because ?
    12·1 answer
  • What is the value of x that makes the given equation true? ​x−3x=2(4+x)
    15·2 answers
  • What is the recursive formula for this geometric sequence with this explicit formula?
    11·2 answers
  • Please help !!!!!picture shown
    15·1 answer
  • Tom has 72 baseball cards this is a times as many cards as Mary has how many baseball cards does Mary have
    5·1 answer
  • PLEASE HELP I WILL MARK BRAINLY
    8·1 answer
  • What digit is Z?<br><br>A. 2<br>B. 4<br>C. 6​
    6·1 answer
  • Elena got on 25 of her mom's nerves. Later, she gets on 7 more. How many nerves of her mother did Elena trigger?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!