Answer:
![y =mx +bx](https://tex.z-dn.net/?f=%20y%20%3Dmx%20%2Bbx)
Where y is the total amount earned, m the amount for each extended warranty and b the fixed cost and x the total amount of TVs
For this case the value of x = 16 since we have 16 Tvs with extended warranties and we can do this:
![1200 = 15*16 +16b](https://tex.z-dn.net/?f=%201200%20%3D%2015%2A16%20%2B16b)
and solving for b we got:
![b= \frac{1200-15*16}{16}= 60](https://tex.z-dn.net/?f=%20b%3D%20%5Cfrac%7B1200-15%2A16%7D%7B16%7D%3D%2060)
And then we can conclude that she earns 60 for each TV
Step-by-step explanation:
For this case we can set a linear model like this:
![y =mx +bx](https://tex.z-dn.net/?f=%20y%20%3Dmx%20%2Bbx)
Where y is the total amount earned, m the amount for each extended warranty and b the fixed cost and x the total amount of TVs
For this case the value of x = 16 since we have 16 Tvs with extended warranties and we can do this:
![1200 = 15*16 +16b](https://tex.z-dn.net/?f=%201200%20%3D%2015%2A16%20%2B16b)
and solving for b we got:
![b= \frac{1200-15*16}{16}= 60](https://tex.z-dn.net/?f=%20b%3D%20%5Cfrac%7B1200-15%2A16%7D%7B16%7D%3D%2060)
And then we can conclude that she earns 60 for each TV
100
6738 —> 7000
5903 —> 6000
7000 - 6000 = 1000
Answer:
75.96
Step-by-step explanation:
![Tan= \frac{opposite}{adjacent}](https://tex.z-dn.net/?f=Tan%3D%20%5Cfrac%7Bopposite%7D%7Badjacent%7D)
![Tan X= \frac{500}{125}](https://tex.z-dn.net/?f=Tan%20X%3D%20%5Cfrac%7B500%7D%7B125%7D)
![Tan X ^{-1} (Tan X)= Tan X ^{-1}(\frac{500}{125} )](https://tex.z-dn.net/?f=Tan%20X%20%5E%7B-1%7D%20%28Tan%20X%29%3D%20Tan%20X%20%5E%7B-1%7D%28%5Cfrac%7B500%7D%7B125%7D%20%29)
Answer 75.96
Volume of a sphere: V=(4/3)πr³
V1=(4/3)π10³
V2=(4/3)π5³
difference: (4/3)π10³-(4/3)π5³=(4/3)π875=3665
the answer is B.<span />
Answer:
![\displaystyle y=-\frac{1}{2}x+1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%3D-%5Cfrac%7B1%7D%7B2%7Dx%2B1)
Step-by-step explanation:
The equation of any line in slope-intercept form is:
y=mx+b
Being m the slope and b the y-intercept.
Assume we know the line passes through points A(x1,y1) and B(x2,y2). The slope can be calculated with the equation:
![\displaystyle m=\frac{y_2-y_1}{x_2-x_1}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20m%3D%5Cfrac%7By_2-y_1%7D%7Bx_2-x_1%7D)
Two points are given: (-6,4) and (-2,2). Calculating the slope:
![\displaystyle m=\frac{2-4}{-2+6}=\frac{-2}{4}=-\frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20m%3D%5Cfrac%7B2-4%7D%7B-2%2B6%7D%3D%5Cfrac%7B-2%7D%7B4%7D%3D-%5Cfrac%7B1%7D%7B2%7D)
The equation of the line is, so far:
![\displaystyle y=-\frac{1}{2}x+b](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%3D-%5Cfrac%7B1%7D%7B2%7Dx%2Bb)
To calculate the value of b, we use any of the given points, for example (-6,4):
![\displaystyle 4=-\frac{1}{2}(-6)+b](https://tex.z-dn.net/?f=%5Cdisplaystyle%204%3D-%5Cfrac%7B1%7D%7B2%7D%28-6%29%2Bb)
![\displaystyle 4=3+b](https://tex.z-dn.net/?f=%5Cdisplaystyle%204%3D3%2Bb)
Solving:
b = 1
The equation of the line is:
![\boxed{\displaystyle y=-\frac{1}{2}x+1}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cdisplaystyle%20y%3D-%5Cfrac%7B1%7D%7B2%7Dx%2B1%7D)
We can see none of the choices is correct.