Answer: 72
72/8 will get you 9. To see if the answer is correct Multiply 9*8.
The algebraic expression for given statement is: 10x + 25 or 3(x + 4) + (7x + 13)
<em><u>Solution:</u></em>
Given the statement:
Three sets of a sum of a number and four are added to the sum of seven times the same number and thirteen
Let us first understand the given statement,
Let the number be "x"
" sum of a number and four" means x + 4
"Three sets of a sum of a number and four" translated to 3(x + 4)
"sum of seven times the same number and thirteen" means 7x + 13
<em><u>Thus the algebraic expression for given statement is:</u></em>

<em><u>Using distributive property in above expression</u></em>

Therefore,

<em><u>Combine the like terms</u></em>

Thus the required expression for given statement is: 10x + 25 or 3(x + 4) + (7x + 13)
I would just divide 400 and 10 and then try to come up with the salary
Answer: ![3x^2y\sqrt[3]{y}\\\\](https://tex.z-dn.net/?f=3x%5E2y%5Csqrt%5B3%5D%7By%7D%5C%5C%5C%5C)
Work Shown:
![\sqrt[3]{27x^{6}y^{4}}\\\\\sqrt[3]{3^3x^{3+3}y^{3+1}}\\\\\sqrt[3]{3^3x^{3}*x^{3}*y^{3}*y^{1}}\\\\\sqrt[3]{3^3x^{2*3}*y^{3}*y}\\\\\sqrt[3]{\left(3x^2y\right)^3*y}\\\\\sqrt[3]{\left(3x^2y\right)^3}*\sqrt[3]{y}\\\\3x^2y\sqrt[3]{y}\\\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27x%5E%7B6%7Dy%5E%7B4%7D%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B3%5E3x%5E%7B3%2B3%7Dy%5E%7B3%2B1%7D%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B3%5E3x%5E%7B3%7D%2Ax%5E%7B3%7D%2Ay%5E%7B3%7D%2Ay%5E%7B1%7D%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B3%5E3x%5E%7B2%2A3%7D%2Ay%5E%7B3%7D%2Ay%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cleft%283x%5E2y%5Cright%29%5E3%2Ay%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cleft%283x%5E2y%5Cright%29%5E3%7D%2A%5Csqrt%5B3%5D%7By%7D%5C%5C%5C%5C3x%5E2y%5Csqrt%5B3%5D%7By%7D%5C%5C%5C%5C)
Explanation:
As the steps above show, the goal is to factor the expression under the root in terms of pulling out cubed terms. That way when we apply the cube root to them, the exponents cancel. We cannot factor the y term completely, so we have a bit of leftovers.
Answer:
The ordered pair is a solution.
Step-by-step explanation:
Plug x = -3 and y = 0 into the 2 inequalities and see if they fit:
-2x + 2y >= 4
-2(-3) + 2(0) = 6 which is > 4 so this one fits.
y>= 2x - 6
0 >= 2*-3) - 6 = -12 which also fits.