Anyone want to join a zoom
Meeting 340 232 6008 and Code gc94F4
We know that a linear equation has a straight line graph. The graph represents an exponential equation or a quadratic equation. So the answer is B. Exponential
Answer:
2 i think
Step-by-step explanation:
Answer: Identify which of the following functions are eigenfunctions of the operator d/dx: (a) eikx, (b) cos kx, (c) k, (d) kx, (e) e−ax2
Step-by-step explanation: First, we going to apply the operator derivate to each item. Remember that a function f is an eigenfunction of D if it satisfies the equation
Df=λf, where λ is a scalar.
a) D(eikx)/dx= ik*eikx, then the function is a eigenfunction and the eingenvalue is ik.
b) D(cos kx)/dx= -ksen kx, then the funcion is not a eigenfunction.
c) D(k)/dx=0, then the funcion is not a eigenfunction.
d) D(kx)/dx=k, then the funcion is not a eigenfunction.
e) D(e-ax2)/dx= -2ax*e-ax2, then the function is a eigenfunction and the eingenvalue is -2ax
Answer:
(a) = 13,500
(b) = 2,250
Step-by-step explanation:
Matching Step 3 with Step 2, we see that ...
(a) = 3x^2·y
(b) = 3x·y^2
Filling in the values given for x and y, we have ...
(a) = 3·30^2·5 = 13,500
(b) = 3·30·5^2 = 2,250