1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qwelly [4]
2 years ago
12

What is the area of this figure? Please help

Mathematics
2 answers:
-BARSIC- [3]2 years ago
7 0

Answer:

<u>369.5 ft²</u>

Step-by-step explanation:

Area of figure :

Area (rectangle 1) + Area (rectangle 2) + Area (triangle 1) + Area (triangle 2)

  • 5 x 4 + 13 x 8 + 1/2 x 23 x 13 + 1/2 x 24 x 8
  • 20 + 104 + 149.5 + 96
  • 124 + 96 + 149.5
  • 220 + 149.5
  • <u>369.5 ft²</u>

iragen [17]2 years ago
3 0

Answer:

369.5 ft²

Step-by-step explanation:

Separate the figure into 2 rectangles and 2 triangles.

(see attached image)

<u>Area 1</u>

Area of a rectangle = width × length

                                 = 4 × 5

                                 = 20 ft²

<u>Area 2</u>

Area of a rectangle = width × length

                                 = 8 × (4 + 4 + 5)

                                 = 8 × 13

                                 = 104 ft²

<u>Area 3</u>

Area of a triangle = 1/2 × base × height

                             = 1/2 × (6 + 4 + 5 + 4 - 6) × 23

                             = 1/2 × 13 × 23

                             = 149.5 ft²

<u>Area 4</u>

Area of a triangle = 1/2 × base × height

                             = 1/2 × 8 × (21 + 8 - 5)

                             = 1/2 × 8 × 24

                             = 96 ft²

<u>Total Area</u>

Area 1 + Area 2 + Area 3 + Area 2 = 20 + 104 + 149.5 + 96

                                                        = 369.5 ft²

You might be interested in
Find the 50th term of this arithmetic sequence:<br><br> 6, 13, 20, 27, . . .<br><br> Answer:
valkas [14]

Answer:

346380

Step-by-step explanation:

hope you gwt an a

7 0
2 years ago
City A had a population of 10000 in the year 1990. City A’s population grows at a constant rate of 3% per year. City B has a pop
Georgia [21]

Answer:

City A and city B will have equal population 25years after 1990

Step-by-step explanation:

Given

Let

t \to years after 1990

A_t \to population function of city A

B_t \to population function of city B

<u>City A</u>

A_0 = 10000 ---- initial population (1990)

r_A =3\% --- rate

<u>City B</u>

B_{10} = \frac{1}{2} * A_{10} ----- t = 10 in 2000

A_{20} = B_{20} * (1 + 20\%) ---- t = 20 in 2010

Required

When they will have the same population

Both functions follow exponential function.

So, we have:

A_t = A_0 * (1 + r_A)^t

B_t = B_0 * (1 + r_B)^t

Calculate the population of city A in 2000 (t = 10)

A_t = A_0 * (1 + r_A)^t

A_{10} = 10000 * (1 + 3\%)^{10}

A_{10} = 10000 * (1 + 0.03)^{10}

A_{10} = 10000 * (1.03)^{10}

A_{10} = 13439.16

Calculate the population of city A in 2010 (t = 20)

A_t = A_0 * (1 + r_A)^t

A_{20} = 10000 * (1 + 3\%)^{20}

A_{20} = 10000 * (1 + 0.03)^{20}

A_{20} = 10000 * (1.03)^{20}

A_{20} = 18061.11

From the question, we have:

B_{10} = \frac{1}{2} * A_{10}  and  A_{20} = B_{20} * (1 + 20\%)

B_{10} = \frac{1}{2} * A_{10}

B_{10} = \frac{1}{2} * 13439.16

B_{10} = 6719.58

A_{20} = B_{20} * (1 + 20\%)

18061.11 = B_{20} * (1 + 20\%)

18061.11 = B_{20} * (1 + 0.20)

18061.11 = B_{20} * (1.20)

Solve for B20

B_{20} = \frac{18061.11}{1.20}

B_{20} = 15050.93

B_{10} = 6719.58 and B_{20} = 15050.93 can be used to determine the function of city B

B_t = B_0 * (1 + r_B)^t

For: B_{10} = 6719.58

We have:

B_{10} = B_0 * (1 + r_B)^{10}

B_0 * (1 + r_B)^{10} = 6719.58

For: B_{20} = 15050.93

We have:

B_{20} = B_0 * (1 + r_B)^{20}

B_0 * (1 + r_B)^{20} = 15050.93

Divide B_0 * (1 + r_B)^{20} = 15050.93 by B_0 * (1 + r_B)^{10} = 6719.58

\frac{B_0 * (1 + r_B)^{20}}{B_0 * (1 + r_B)^{10}} = \frac{15050.93}{6719.58}

\frac{(1 + r_B)^{20}}{(1 + r_B)^{10}} = 2.2399

Apply law of indices

(1 + r_B)^{20-10} = 2.2399

(1 + r_B)^{10} = 2.2399 --- (1)

Take 10th root of both sides

1 + r_B = \sqrt[10]{2.2399}

1 + r_B = 1.08

Subtract 1 from both sides

r_B = 0.08

To calculate B_0, we have:

B_0 * (1 + r_B)^{10} = 6719.58

Recall that: (1 + r_B)^{10} = 2.2399

So:

B_0 * 2.2399 = 6719.58

B_0  = \frac{6719.58}{2.2399}

B_0  = 3000

Hence:

B_t = B_0 * (1 + r_B)^t

B_t = 3000 * (1 + 0.08)^t

B_t = 3000 * (1.08)^t

The question requires that we solve for t when:

A_t = B_t

Where:

A_t = A_0 * (1 + r_A)^t

A_t = 10000 * (1 + 3\%)^t

A_t = 10000 * (1 + 0.03)^t

A_t = 10000 * (1.03)^t

and

B_t = 3000 * (1.08)^t

A_t = B_t becomes

10000 * (1.03)^t = 3000 * (1.08)^t

Divide both sides by 10000

(1.03)^t = 0.3 * (1.08)^t

Divide both sides by (1.08)^t

(\frac{1.03}{1.08})^t = 0.3

(0.9537)^t = 0.3

Take natural logarithm of both sides

\ln(0.9537)^t = \ln(0.3)

Rewrite as:

t\cdot\ln(0.9537) = \ln(0.3)

Solve for t

t = \frac{\ln(0.3)}{ln(0.9537)}

t = 25.397

Approximate

t = 25

7 0
3 years ago
Frr3 po1nts<br>frr3 po11nts hurry and answer​
AlladinOne [14]

Answer:

thank you so much........

5 0
2 years ago
Read 2 more answers
Write 425% as a fraction or mixed number in simplest form.
Temka [501]

Answer:

17/40

here! hope this helps!

8 0
2 years ago
Please answer this quickly!
kari74 [83]
54/1,000

just do Length x Width x Height 
7 0
3 years ago
Other questions:
  • How do you find the quotient of positive and negative decimals?
    5·2 answers
  • Scenario
    13·1 answer
  • Find the value of x.
    9·2 answers
  • I live exactly 42.6 miles from my mom. To get to her house I drive 36.25 miles due North. I turn right and drive due East onto 1
    10·1 answer
  • Answer this question please. I need help!!☺️
    9·1 answer
  • Find the unit price for each trail mix. cost is $6.00 and weight 3/4Lb
    10·1 answer
  • A café's annual income depends on x, the number of customers. The function /(x) = 4x2 – 20x
    14·2 answers
  • Could someone plz just answer this now?
    8·1 answer
  • elton is a candle maker , each 15 cm long candle makes burns evenly for 6 hours if elton makes a 45 cm long candle how long woul
    5·1 answer
  • -5=0.1x-8.5 what is the answer
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!