Answer:

Step-by-step explanation:
Given

Required
Find D
The label of the quadrilateral are not clear. However, a more complete question illustrates that B and D are opposite sides.
To solve for D, we make use of:
---- opposite
of a
quadrilateral
Make D the subject



Abdhajajsjehehsusuwh nini are good djalma he ysiwjegdve
Answer: 
<u>Step-by-step explanation:</u>
"At least one girl" means P(1 girl) + P(2 girls) + P(3 girls) or 1 - P(all boys)
I will use the latter: 1 - P(all boys)
P(all boys) = 

Answer:
m > 4
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define</u>
11 + m > 15
<u>Step 2: Solve for </u><em><u>m</u></em>
- Subtract 11 on both sides: m > 4
Here we see that any value <em>m</em> greater than 4 would work as a solution to the inequality.
Answer:
2.
A. (P+h)(x)
2x/x+4 (x-1) + x/x-1 (x+4)
2x^2-1/x^2-4
+
X^2+4/x^2-4
= 3x^2+3/x^2-4
B. (F-g)(x)
X^2-7x+6-x - 6
= x^2 -8x
C. (Fg)(x)
(X^2-7x+6)(x-6)
= x^3-13x^2+48x-36
D. (H/p)(x)
X/x-1 / 2x/x+4
X/x-1 / x+4/2x
= X^2+4x/2x^2-2x
3.
A. (F+g)(3)
X^2+1 + x-4
3^2+1 + 3-4
10 -1
= 9
B. (f-g)(0)
X^2+1 - x-4
0+1 -0-4
1-4
= -3
C. (Fg)(-k)
(X^2+1) (x-4)
(-k^2+1) (-k-4)
K^3+4k^2-k-4
D. (F/g)(k-2)
X^2+1 /x-4
K-2^2+1 / k-2 -2
= K^2-4k+5 / k-4
Step-by-step explanation: