The problem is asking how much each person will need to pay. Simplifying the problem into an equation with variables (an algorithm) will greatly help you solve it:
S = Sales Tax = $ 7.18 per any purchase
A = Admission Ticket = $ 22.50 entry price for one person (no tax applied)
F = Food = $ 35.50 purchases for two people
We know the cost for one person was: (22.50) + [(35.50/2) + 7.18] =
$ 47.43 per person. Now we can check each method and see which one is the correct algorithm:
Method A)
[2A + (F + 2S)] / 2 = [ (2)(22.50) + [35.50 + (2)(7.18)] ]/ 2 = $47.43
Method A is the correct answer
Method B)
[(2A + (1/2)F + 2S) /2 = [(2)(22.50) + 35.50(1/2) + (2)7.18] / 2 = $38.55
Wrong answer. This method is incorrect because the tax for both tickets bought are not being used in the equation.
Method C)
[(A + F) / 2 ]+ S = [(22.50 + 35.50) / 2 ] + 7.18 = $35.93
Wrong answer. Incorrect Method. The food cost is being reduced to the cost of one person but admission price is set for two people.
Answer: The answer is 2
Step-by-step explanation:
3j + 4 = 10 J = 2
3x2=6
6+4= 10
Answer:
B
Step-by-step explanation:
She needed to subtract 36 from both sides of the equation, instead she added 36 to the right side.
Answer:
could you give me some story problems Plz
Step-by-step explanation:
A function is a set of ordered pairs in which no two different ordered pairs have the same x -coordinate. An equation that produces such a set of ordered pairs defines a function. What is the catch? There can be at most one output for every input.