Answer:
1) At the highest point of the building.
2) The same amount of energy.
3) The kinetic energy is the greatest.
4) Potential energy = 784.8[J]
5) True
Explanation:
Question 1
The moment when it has more potential energy is when the ball is at the highest point in the building, that is when the ball is at a height of 40 meters from the ground. It is taken as a point of reference of potential energy, the level of the soil, at this point of reference the potential energy is zero.
![E_{p} = m*g*h\\E_{p} = 2*9.81*40\\E_{p} = 784.8[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20m%2Ag%2Ah%5C%5CE_%7Bp%7D%20%3D%202%2A9.81%2A40%5C%5CE_%7Bp%7D%20%3D%20784.8%5BJ%5D)
Question 2)
The potential energy as the ball falls becomes kinetic energy, in order to be able to check this question we can calculate both energies with the input data.
![E_{p}=m*g*h\\ E_{p} = 2*9.81*20\\ E_{p} = 392.4[J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%20E_%7Bp%7D%20%3D%202%2A9.81%2A20%5C%5C%20E_%7Bp%7D%20%3D%20392.4%5BJ%5D%5C%5C)
And the kinetic energy will be:
![E_{k}=0.5*m*v^{2}\\ where:\\v = velocity = 19.8[m/s]\\E_{k}=0.5*2*(19.8)^{2}\\ E_{k}=392.04[J]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D0.5%2Am%2Av%5E%7B2%7D%5C%5C%20%20where%3A%5C%5Cv%20%3D%20%20velocity%20%3D%2019.8%5Bm%2Fs%5D%5C%5CE_%7Bk%7D%3D0.5%2A2%2A%2819.8%29%5E%7B2%7D%5C%5C%20%20E_%7Bk%7D%3D392.04%5BJ%5D)
Therefore it is the ball has the same potential energy and kinetic energy as it is half way through its fall.
Question 3)
As the ball drops all potential energy is transformed into kinetic energy, therefore being close to the ground, the ball will have its maximum kinetic energy.
![E_{k}=E_{p}=m*g*h = 2*9.81*40\\ E_{k} = 784.8[J]\\ E_{k} = 0.5*2*(28)^{2}\\ E_{k} = 784 [J]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DE_%7Bp%7D%3Dm%2Ag%2Ah%20%3D%202%2A9.81%2A40%5C%5C%20%20E_%7Bk%7D%20%3D%20784.8%5BJ%5D%5C%5C%20E_%7Bk%7D%20%3D%200.5%2A2%2A%2828%29%5E%7B2%7D%5C%5C%20E_%7Bk%7D%20%3D%20784%20%5BJ%5D)
Question 4)
It can be easily calculated using the following equation
![E_{p} =m*g*h\\E_{p}=2*9.81*40\\E_{p} =784.8[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D2%2A9.81%2A40%5C%5CE_%7Bp%7D%20%3D784.8%5BJ%5D)
Question 5)
True
The potential energy at 20[m] is:
![E_{p}=2*9.81*20\\ E_{p}= 392.4[J]\\The kinetic energy is:\\E_{k}=0.5*2*(19.8)^{2} \\E_{k}=392[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D2%2A9.81%2A20%5C%5C%20E_%7Bp%7D%3D%20392.4%5BJ%5D%5C%5CThe%20kinetic%20energy%20is%3A%5C%5CE_%7Bk%7D%3D0.5%2A2%2A%2819.8%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D392%5BJ%5D)
Yes. Displacement is a vector, as opposed to distance, which is a scalar. Since displacement is a vector quantity, the negative sign represents direction. As with velocity and acceleration, it just comes down to how you define your coordinate system
Answer:
on increasing pressure, temperature will also increase.
Explanation:
Considering the ideal gas equation as:
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Thus, at constant volume and number of moles, Pressure of the gas is directly proportional to the temperature of the gas.
P ∝ T
Also,
Also, using Gay-Lussac's law,

Thus, on increasing pressure, temperature will also increase.
Answer:its B
Explanation:
The suns gravity keeps the planets in their gravitational orbit.
The correct answer to this qustion is velocity and time