Answer:
Explanation:
Question 1
An arrow weighing 20g shortly after firing has a speed of 50m / s. Calculate the work done by the athlete. What is the potential energy of the elasticity of the tensed string?
mass m = 20g = 20/1000 = 0.02kg
speed v = 50m / s
P.E = K.E = ½mv²
P.E = ½ × 0.02 × 50²
P.E = 25 J
work done = P.E = 25J
Qestion 2
A 80 kg athlete stood on a trampoline with a coefficient of elasticity of k = 2 kN / m. As far as the edge of the trampoline lowers.
force of elasticity
F = -kx
x = F / k
in our case F will be the force of pressure or gravity
F = mg
g is gravitational acceleration, and according to Newton's second law, acceleration is force through mass - unit of force N, unit of mass kg. Acceleration either in m / s ^ 2 or N / kg
F = 80kg * 10N / kg = 800 N
x = 800N / -2000N = -0.4
The trampoline will lower, so from the level by 0.4 meters and hence this minus
The horizontal component of velocity is
(22 m/s) • cosine(62°).
The vertical component of velocity is
(22 m/s) • sine(62°).
These are the original components, right after the kick. As time goes on, the horizontal one doesn't change. But the vertical one gets bigger and bigger, because gravity is accelerating the ball downward.
That's the complete story of projectile motion.
Answer:
Explanation:
A. Using
E= ma/q
E=m/q(2s/t²)
So
E= 9.1x10^-31/1.6*10^-19( 2*4.5/ 3*10-12)
E=5.7NC
The electric field has to be downward since the force is positive that is upward
B.
The electron acceleration is of the order of 10^11 times greater so for practical purposes we neglect the effect of gravity
The answer is C) C and E.
The wavelength, or the period of the wave, is the length or amount of time of one complete cycle, meaning the time it takes for the wave to return to its original position. A period involves one trough, one crest, and a return to rest, or the zero. We can see that this occurs between C and E.
Another way to look at it is the period of time, or length, before the wave returns to its original position. Where the measurement starts isn't really relevant, as long as the measurement is where the wave returns to that position.