A couple of the methods of molecular biotechnology are cloning and recombinant DNA.
Answer:
According to Fick's law, the rate of diffusion of any substance across any barrier is<u> directly proportional to the surface area of the membrane or any layer exposed. and the concentration of the diffusing substance available, but the rate is inversely proportional to the diffusion distance available.</u>
<u />
Thus the rate at which oxygen will move across the phospholipid bilayer will depend on the concentration or amount per mole of the oxygen molecule hitting the phopholipid at a prticular time and how permeable the phospholipd layer is to oxygen molecules, but the rate of its movement across will be reduced as the distance between the phosphoslipid bilayer and the diffusing molecules increases.
Therefore, the concentration of oxygen should be maximised, the surface area of the phospholipid bilayer should also be maximized. the distances between the phopholipid and the vessel containing the diffusing oxygen molecules should be drastically reduced. With this Fick's law has been applied , and therefore maximum oxygen molecules can diffuse across.
Explanation:
Force is mass × acceleration and it is measured in Newtons.
Mass = 3kg
Acceleration = 9m/s²
F = ma
F = 3×9
F = 27Newtons.
The answer is that a unicellular organism would swell and burst.
In a hypotonic solution <span>the </span>water concentration<span> of the cell's cytoplasm is </span>lower<span> then that of the hypotonic solution. If unicellular organism is exposed to a hypotonic solution, the water from the solution will enter the organism by the process called osmosis. The aim is to balance water concentration on the inside and outside of the organism. But, that water entering the cytoplasm of the cell will make pressure on the cell membrane. If the </span><span>excess water cannot be removed from the organism, it will swell and burst.</span>
Well-adjusted barometer can help you predict changing weather day to day because it detects minute changes in the air pressure.