Answer:
This means that f(x)→∞ as x→−∞ and f(x)→∞ as x→∞.
Step-by-step explanation:
Since the leading term of the polynomial (the term in a polynomial which contains the highest power of the variable) is x4, then the degree is 4, i.e. even, and the leading coefficient is 1, i.e. positive.
This means that f(x)→∞ as x→−∞ and f(x)→∞ as x→∞.

is undefined where the denominator is zero. The domain is all values of x for which the function is defined.
The domain of f(x) is all real numbers except 13.
Step-by-step explanation:
please mark me as branlist