Using the t-distribution to build the 99% confidence interval, it is found that:
- The margin of error is of 3.64.
- The 99% confidence interval for the population mean is (19.36, 26.64).
<h3>What is a t-distribution confidence interval?</h3>
The confidence interval is:
![\overline{x} \pm t\frac{s}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%20%5Cpm%20t%5Cfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D)
In which:
is the sample mean.
- s is the standard deviation for the sample.
The critical value, using a t-distribution calculator, for a two-tailed 95% confidence interval, with 21 - 1 = 20 df, is t = 2.086.
The other parameters are given as follows:
![\overline{x} = 23, s = 8, n = 21](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%20%3D%2023%2C%20s%20%3D%208%2C%20n%20%3D%2021)
The margin of error is given by:
![M = t\frac{s}{\sqrt{n}} = 2.086\frac{8}{\sqrt{21}} = 3.64](https://tex.z-dn.net/?f=M%20%3D%20t%5Cfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D%20%3D%202.086%5Cfrac%7B8%7D%7B%5Csqrt%7B21%7D%7D%20%3D%203.64)
Hence the bounds of the interval are:
![\overline{x} - M = 23 - 3.64 = 19.36](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%20-%20M%20%3D%2023%20-%203.64%20%3D%2019.36)
![\overline{x} + M = 23 + 3.64 = 26.64](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%20%2B%20M%20%3D%2023%20%2B%203.64%20%3D%2026.64)
The 99% confidence interval for the population mean is (19.36, 26.64).
More can be learned about the t-distribution at brainly.com/question/16162795
#SPJ1