R^2=(x-6)^2+(y-4)^2
r^2=(6-2)^2+(4-1)^2, r^2=16+9=25
(x-6)^2+(y-4)^2=25
Answer:
x= -6, y= 10
Step-by-step explanation:
x= y + 4
2x = 3y - 2
If we replace "x" with "y+4" in the second equation we get:
2(y+4) = 3y - 2
2y + 8 = 3y - 2
2y - 3y = -2-8
-y = -10
y = 10
Now we can go back to the first equation and solve for x:
x = y + 4
x = 10 + 4 = 14
Answer:
25 and 21 hours respectively
Step-by-step explanation:
Let the number of hours worked by each welder be x and y respectively.
They worked a total of 46 hours. This means :
x + y = 46 hours.......(I)
Now, given their hourly charges, since we have the total amount of money realized, we can make an equation out of it. This means:
34x + 39y = 1669........(ii)
We then solve both simultaneously. From I, x = 46 -y
We can substitute this into ii
34(46 -y) + 39y = 1669
1564 -34y + 39y = 1669
5y = 1669 - 1564
5y = 105
y = 105/5 = 21
x = 46 - y
x = 46 - 21 = 25 hours
The numbers of hours worked by the welders are 25 and 21 respectively
·_21.21
25l546. 25 goes into 54 twice with a remainder of 4
l50↓
-----
l 46 25 goes into 46 once with 21 left
l 25
------
21
Let's solve this problem step-by-step.
STEP-BY-STEP SOLUTION:
We will be using simultaneous equations to solve this problem.
First we will establish the equations which we will be using as displayed below:
Equation No. 1 -
A + B = 90°
Equation No. 1 -
A = 2B + 12
To begin with, let's make ( A ) the subject in the first equation as displayed below:
Equation No. 1 -
A + B = 90
A = 90 - B
Next we will substitute the value of ( A ) from the first equation into the second equation and solve for ( B ) as displayed below:
Equation No. 2 -
A = 2B + 12
( 90 - B ) = 2B + 12
- B - 2B = 12 - 90
- 3B = - 78
B = - 78 / - 3
B = 26°
Then we will substitute the value of ( B ) from the second equation into the first equation to solve for ( A ) as displayed below:
A = 90 - B
A = 90 - ( 26 )
A = 64°
ANSWER:
Therefore, the answer is:
A = 64°
B = 26°
Please mark as brainliest if you found this helpful! :)
Thank you <3