Answer:
x = 4
Step-by-step explanation:
When a tangent and a secant are drawn from an external point to a circle.
Then the product of the external part of the secant and the entire secant and the square of the measure of the tangent are equal, hence
x(x + 5) = 6²
x² + 5x = 36 ( subtract 36 from both sides )
x² + 5x - 36 = 0 ← in standard form
(x + 9)(x - 4) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 9 = 0 ⇒ x = - 9
x - 4 = 0 ⇒ x = 4
However, x > 0 ⇒ x = 4
(a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2+2ab+2b^2 =The answer
(a + b)^2 = a^2 + 2ab + b^2 => square of sums
(a - b)^2 = a^2 - 2ab + b^2 => square of deference
and of course one of most important ones:
a^2 - b^2 = (a - b)(a + b) => difference of squares
Best Answer: (a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2 + 2ab + 2b^2
a^4 + 4b^4 => i.e. 4a^2b^2 ,
a^4 + 4a^2b^2 + 4b^4 => a^2 + 2ab + b^2 = (a + b)^2, if : a = a^2 , b = 2b^2:
(a^2 + 2b^2)^2 = a^4 + 4a^2b^2 + 4b^4 => We can't add or subtract the value to the expression.
a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2 =>
(a^2 + 2b^2)^2 - 4a^2b^2 =>
(a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab) =>
(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)
Greetings!
The answer is 8i.
i = √(-1)
√(-64) = √((-1) * 64)
= √(-1) * √64
= i * √8²
= i * 8
= 8i
Answer:
nose pero me entiende n verdad
Answer:
20
Step-by-step explanation: