Answer:
Option 1,
The triangle MNP is similar to the triangle with side lengths 35 cm, 41 cm, 43 cm
Step-by-step explanation:
Given triangle MNP has side lengths 3.5 cm, 4.1 cm, and 4.3 cm. we have to find the similarity triangle sides from the given option.
As we know, the two triangles are similar if the measures of the corresponding sides of two triangles are proportional.
For the first option: 35 cm, 41 cm, 43 cm

which shows that the sides are proportional.
we have to choose only one option ∴ we needn't have to check the others
Hence, the triangle MNP is similar to the triangle with side lengths 35 cm, 41 cm, 43 cm
Yearly salary would be 240,000 for 5,000 and 48,000 for 1,000 a week
I I'm guessing true if you don't think so then don't take my advice.

<h3><u>Given </u><u>:</u><u>-</u></h3>
- A marker in the center of the fairway is 150 yards away from the centre of the green
- While standing on the marker and facing the green, the golfer turns 100° towards his ball
- Then he peces off 30 yards to his ball
<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>distance </u><u>between </u><u>the </u><u>golf </u><u>ball </u><u>and </u><u>the </u><u>center </u><u>of </u><u>the </u><u>green </u><u>.</u>
<h3><u>Let's </u><u> </u><u>Begin </u><u>:</u><u>-</u></h3>
Let assume that the distance between the golf ball and central of green is x
<u>Here</u><u>, </u>
- Distance between marker and centre of green is 150 yards
- <u>That </u><u>is</u><u>, </u>Height = 150 yards
- For facing the green , The golfer turns 100° towards his ball
- <u>That </u><u>is</u><u>, </u>Angle = 100°
- The golfer peces off 30 yards to his ball
- <u>That </u><u>is</u><u>, </u>Base = 30 yards
<u>According </u><u>to </u><u>the </u><u>law </u><u>of </u><u>cosine </u><u>:</u><u>-</u>

- Here, a = perpendicular height
- b = base
- c = hypotenuse
- cos theta = Angle of cosine
<u>So</u><u>, </u><u> </u><u>For </u><u>Hypotenuse </u><u>law </u><u>of </u><u>cosine </u><u>will </u><u>be </u><u>:</u><u>-</u>

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>






Hence, The distance between the ball and the center of green is 153.48 or 153.5 yards