Answer:
2.2 x 10-19
Explanation:
Kinetic Energy = 1/2 m v ^2
Answer:
The density of the woman is 950.8 kg/m³
Explanation:
Given;
fraction of the woman's volume above the surface = 4.92%
then, fraction of the woman's volume below the surface = 100 - 4.92% = 95.08%
the specific gravity of the woman 
The density of the woman is calculate as;

Density of fresh water = 1000 kg/m³
Density of the woman = 0.9508 x 1000 kg/m³
Density of the woman = 950.8 kg/m³
Therefore, the density of the woman is 950.8 kg/m³
To develop this problem it is necessary to apply the concept of Frequency based on speed and wavelength.
According to the definition the frequency can be expressed as

Where,
v = Velocity
Wavelength
Our value are given by,
v = 345m/s

Replacing


Therefore the frequency of the tuning fork is 547.61Hz
<span>3.78 m
Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes.
7.2 m/s / 9.81 m/s^2 = 0.77945 s
The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving
d = 1/2 A T^2
d = 1/2 9.81 m/s^2 (0.77945 s)^2
d = 4.905 m/s^2 0.607542 s^2
d = 2.979995 m
So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height.
d = 2.979995 m + 0.8 m = 3.779995 m
Rounding to 2 decimal places gives us 3.78 m</span>
Answer:
The statement is incorrect because, a force acting on an object does not necessarily have to produce motion.
People have the misconception that when a force acts on an object it always produces motion
Explanation:
The statement is incorrect because, a force acting on an object does not necessarily have to produce motion. It could be in static equilibrium where the net force is zero and produces not motion. The body could also be in dynamic equilibrium when no net force acts on it moving at a constant velocity. But here we are concerned with static equilibrium since the body does not move at all.
People have the misconception that when a force acts on an object it always produces motion and, we have seen from the above tat its not always true.