<span>1.7 rad/s
The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>
Explanation:
The criteria for decision making would be
1. I would fund for the school of young diabetics, for the sole purpose of them leaning and being motivated for a healthy lifestyle.
2. I would also fund for new and improved insulin pumps as old ones cause multiple problems.
Upward and downward forces cancel out. Net force is 8 newtons to the right
1.8 mol of Na. hope this helps
Answer:We have , a relation in frequency f and wavelength λ of a wave having the velocity v as ,
v=fλ ,
given f=60Hz , λ=20m ,
therefore velocity of wave , v=60×20=1200m/s