Answer:
The child needs a score of 37.2 to move up to the next level of the competition.
Step-by-step explanation:
The mean is the sum of all scores divided by the number of competions. So

In which S is the sum of all her scores and T is the number of competitions.
The child has five competions:
Which means that 
She has to get a mean of at least 36.5, so 
Her scores are: 35.5, 36.3. 36.6, and 36.9. Her last score, i am going to call x. So

The child needs a score of _____ to move up to the next level of the competition.
This score is x. So




Answer:
Step-by-step explanation:
In the question it’s given that : y=|x| => even if x will be a negative number,y will be positive.
1) -3 ; 3 ; (-3,3)
2) -2 ; 2 ; (-2,2)
3) -1 ; 1 ; (-1,1)
4) 0 ; 0 ; (0,0)
5) 1 ; 1 ; (1,1)
6) 2 ; 2 ; (2,2)
7) 3 ; 3 ; (3,3)
yea this is a tough one it wouldn't even have a full number t would be decimals
the equilibrium point, is when Demand = Supply, namely, when the amount of "Q"uantity demanded by customers is the same as the Quantity supplied by vendors.
That occurs when both of these equations are equal to each other.
let's do away with the denominators, by multiplying both sides by the LCD of all fractions, in this case, 12.
![\bf \stackrel{\textit{Supply}}{-\cfrac{3}{4}Q+35}~~=~~\stackrel{\textit{Demand}}{\cfrac{2}{3}Q+1}\implies \stackrel{\textit{multiplying by 12}}{12\left( -\cfrac{3}{4}Q+35 \right)=12\left( \cfrac{2}{3}Q+1 \right)} \\\\\\ -9Q+420=8Q+12\implies 408=17Q\implies \cfrac{408}{17}=Q\implies \boxed{24=Q} \\\\\\ \stackrel{\textit{using the found Q in the Demand equation}}{P=\cfrac{2}{3}(24)+1}\implies P=16+1\implies \boxed{P=17} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{Equilibrium}{(24,17)}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7BSupply%7D%7D%7B-%5Ccfrac%7B3%7D%7B4%7DQ%2B35%7D~~%3D~~%5Cstackrel%7B%5Ctextit%7BDemand%7D%7D%7B%5Ccfrac%7B2%7D%7B3%7DQ%2B1%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20by%2012%7D%7D%7B12%5Cleft%28%20-%5Ccfrac%7B3%7D%7B4%7DQ%2B35%20%5Cright%29%3D12%5Cleft%28%20%5Ccfrac%7B2%7D%7B3%7DQ%2B1%20%5Cright%29%7D%20%5C%5C%5C%5C%5C%5C%20-9Q%2B420%3D8Q%2B12%5Cimplies%20408%3D17Q%5Cimplies%20%5Ccfrac%7B408%7D%7B17%7D%3DQ%5Cimplies%20%5Cboxed%7B24%3DQ%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20found%20Q%20in%20the%20Demand%20equation%7D%7D%7BP%3D%5Ccfrac%7B2%7D%7B3%7D%2824%29%2B1%7D%5Cimplies%20P%3D16%2B1%5Cimplies%20%5Cboxed%7BP%3D17%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7BEquilibrium%7D%7B%2824%2C17%29%7D~%5Chfill)