Answer:
The velocity of a falling object
Explanation:
The positive X axis is towards right and positive Y axis is towards up, so North direction is positive
A vector with less than 1 magnitude is not negative, because its magnitude may be in between 0 and 1 which is positive vector.
Any vector whose magnitude is greater than 1 is never be a negative vector.
The velocity of a falling object is towards bottom, that is towards negative Y axis. So that vector is negative.
Answer:
I Will say the Answer is A
Explanation:
Answer:
It corresponds to a distance of 100 parsecs away from Earth.
Explanation:
The angle due to the change in position of a nearby object against the background stars it is known as parallax.
It is defined in a analytic way as it follows:

Where d is the distance to the star.
(1)
Equation (1) can be rewritten in terms of d:
(2)
Equation (2) represents the distance in a unit known as parsec (pc).
The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).
For the case of (
):


Hence, it corresponds to a distance of 100 parsecs away from Earth.
<em>Summary:</em>
Notice how a small parallax angle means that the object is farther away.
Key terms:
Parsec: Parallax of arc second
Answer:
0.144 kg of water
Explanation:
From Raoult's law,
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 423 mmHg ÷ 528.8 mmHg = 0.8
Let the moles of solvent (water) be y
Moles of solute (C3H8O3) = 2 mole
Total moles of solution = moles of solvent + moles of solute = (y + 2) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.8 = y/(y + 2)
y = 0.8(y + 2)
y = 0.8y + 1.6
y - 0.8y = 1.6
0.2y = 1.6
y = 1.6/0.2 = 8
Moles of solvent (water) = 8 mol
Mass of water = moles of water × MW = 8 mol × 18 g/mol = 144 g = 144/1000 = 0.144 kg