Answer:
= 15.57 N
= 2.60 N
= 16.98 N
The mass of the bag is the same on the three planets. m=1.59 kg
Explanation:
The weight of the sugar bag on Earth is:
g=9.81 m/s²
m=3.50 lb=1.59 kg
=m·g=1.59 kg×9.81 m/s²= 15.57 N
The weight of the sugar bag on the Moon is:
g=9.81 m/s²÷6= 1.635 m/s²
=m·g=1.59 kg× 1.635 m/s²= 2.60 N
The weight of the sugar bag on the Uranus is:
g=9.81 m/s²×1.09=10.69 m/s²
=m·g=1.59 kg×10.69 m/s²= 16.98 N
The mass of the bag is the same on the three planets. m=1.59 kg
It’s half the mass of the object by its velocity ^2
<span>1.) It is 6.00km from your home to the physics lab. As part of your physical fitness program, you could run that distance at 10.0km/hr (which uses up energy at the rate of 700W ), or you could walk it leisurely at 3.00km/hr (which uses energy at 290 W).
A.)Which choice would burn up more energy?
running or walking?
b.)How much energy (in joules) would it burn?
c.)Why is it that the more intense exercise actually burns up less energy than the less intense one?
Follow 2 answers Report Abuse
Answers
billrussell42
Best Answer: running, at 10 km/hour for 6 km is
6 km / 10 km/hour = 0.6 hour or 36 min
energy used is 700 watts or 700 joules/s x 36 min x 60s/min = 1.512e6 joules or 1.5 MJ
walking, at 3 km/hour for 6 km
6 km / 3 km/hour = 2 hour or 120 min
energy used is 290 watts or 290 joules/s x 120 min x 60s/min = 1.872e6 joules or 1.8 MJ
C) should be obvious
PS, this has nothing to do with potential energy.
billrussell42 · 5 years ago
0 Thumbs up 1 Thumbs down Report Abuse Comment
Simon van Dijk
I assume the watt consumption is per hour. Then running 6km at 10.0 km/h results in 700*6/10 = 420 w.h and walking in 290*6/3 = 580 w.h So walking would burn up more energy (kwh)
b) 1 kilowatt hour = 3 600 000 joules
so 420 wh = 0.42 kwh = 1.51.10^6 joule
c) when you put more effort in making the distance your energy is used more efficient.
Simon van Dijk · 5 years ago
0 Thumbs up 2 Thumbs down Report Abuse Comment</span>
Answer:
a) 578.0 cm²
b) 25.18 km
Explanation:
We're given the density and mass, so first calculate the volume.
D = M / V
V = M / D
V = (6.740 g) / (19.32 g/cm³)
V = 0.3489 cm³
a) The volume of any uniform flat shape (prism) is the area of the base times the thickness.
V = Ah
A = V / h
A = (0.3489 cm³) / (6.036×10⁻⁴ cm)
A = 578.0 cm²
b) The volume of a cylinder is pi times the square of the radius times the length.
V = πr²h
h = V / (πr²)
h = (0.3489 cm³) / (π (2.100×10⁻⁴ cm)²)
h = 2.518×10⁶ cm
h = 25.18 km
Boiling water has a lot more heat than the oven's air (even though the air has a higher temperature). ... A match has a greater temperature than the iceberg because the average molecule in the match is moving faster than the average molecule in the iceberg