The answer is x=6 and y=4.
6+4=10
and 8 times 6 + 12 times 4 is 96.
Since the rate of descent is a constant this is a linear equation and can be expressed as:
h=vt+b, where h=feet, v=slope or rate, b=y-intercept (y value when x=0 which is the initial height)
h=-2t+b, using the point (3,67) we can solve for b, or the initial height
67=-2(3)+b
67=-6+b
73=b so the initial height was 73 ft and the height equation is then:
h(t)=67-2t so when t=8 you have:
h(8)=67-2(8)
h(8)=67-16
h(8)=51 ft
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
Answer:
B) Vertex (1,2), maximum
Step-by-step explanation:
First, determine if the graph has a maximum or a minimum value. Since the graph opens downwards, it has a <u>maximum</u> value.
The maximum is the point that has the greatest y value. We can see that the greatest y value is at
. Going down two units from that spot, we can see that the x value is at
. We can plug those into the vertex form,
. By plugging in we get the point
.