1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
2 years ago
6

Write a recursive formula for the sequence 7, 4, 1, -2, -5, .... Then find the next term.

Mathematics
1 answer:
olga55 [171]2 years ago
4 0

Answer:

option B

Explanation:

<u>Recursive Formula</u>: aₙ = aₙ₋₁ + d

<u>Given Sequence</u>: 7, 4, 1, -2, -5,....

Identify the common difference:

second term - first term

4 - 7 = -<u>3</u>  or 1 - 4 = <u>-3</u> or -2 - 1 = <u>-3</u>

<u></u>

So formula:

\sf a_n = a_{n-1}-3, where \sf a_1 = 7

Find next term:

\sf a_6 = a_{6-1}-3 = -5-3 = -8

You might be interested in
For the following telescoping series, find a formula for the nth term of the sequence of partial sums {Sn}. Then evaluate limn→[
Ivenika [448]

Answer:

The following are the solution to the given points:

Step-by-step explanation:

Given value:

1) \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\2) \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

Solve point 1 that is \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\:

when,

k= 1 \to  s_1 = \frac{1}{1+1} - \frac{1}{1+2}\\\\

                  = \frac{1}{2} - \frac{1}{3}\\\\

k= 2 \to  s_2 = \frac{1}{2+1} - \frac{1}{2+2}\\\\

                  = \frac{1}{3} - \frac{1}{4}\\\\

k= 3 \to  s_3 = \frac{1}{3+1} - \frac{1}{3+2}\\\\

                  = \frac{1}{4} - \frac{1}{5}\\\\

k= n^  \to  s_n = \frac{1}{n+1} - \frac{1}{n+2}\\\\

Calculate the sum (S=s_1+s_2+s_3+......+s_n)

S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....\frac{1}{n+1}-\frac{1}{n+2}\\\\

   =\frac{1}{2}-\frac{1}{5}+\frac{1}{n+1}-\frac{1}{n+2}\\\\

When s_n \ \ dt_{n \to 0}

=\frac{1}{2}-\frac{1}{5}+\frac{1}{0+1}-\frac{1}{0+2}\\\\=\frac{1}{2}-\frac{1}{5}+\frac{1}{1}-\frac{1}{2}\\\\= 1 -\frac{1}{5}\\\\= \frac{5-1}{5}\\\\= \frac{4}{5}\\\\

\boxed{\text{In point 1:} \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2} =\frac{4}{5}}

In point 2: \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

when,

k= 1 \to  s_1 = \frac{1}{(1+6)(1+7)}\\\\

                  = \frac{1}{7 \times 8}\\\\= \frac{1}{56}

k= 2 \to  s_1 = \frac{1}{(2+6)(2+7)}\\\\

                  = \frac{1}{8 \times 9}\\\\= \frac{1}{72}

k= 3 \to  s_1 = \frac{1}{(3+6)(3+7)}\\\\

                  = \frac{1}{9 \times 10} \\\\ = \frac{1}{90}\\\\

k= n^  \to  s_n = \frac{1}{(n+6)(n+7)}\\\\

calculate the sum:S= s_1+s_2+s_3+s_n\\

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(n+6)(n+7)}\\\\

when s_n \ \ dt_{n \to 0}

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(0+6)(0+7)}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{6 \times 7}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{42}\\\\=\frac{45+35+28+60}{2520}\\\\=\frac{168}{2520}\\\\=0.066

\boxed{\text{In point 2:} \sum ^{\infty}_{k = 1} \frac{1}{(n+6)(n+7)} = 0.066}

8 0
3 years ago
$99 watch with a 40% discount
Virty [35]
First change the percent to a decimal 40% = 0.4
then subtract 99 - 0.4 = 98.6
the answer is 98.6
7 0
3 years ago
Enter the range of values for x
Pavlova-9 [17]

<em>Greetings from Brasil...</em>

See the attached figure. The smaller the θ angle, the smaller the AB side will be. If the angle θ = 90º, then AB = 25. As θ < 90, then AB < 25

5X - 10 < 25

5X < 25 + 10

X < 35/5

X < 7

The AB side can be neither zero nor negative. So

5X - 10 > 0

5X > 10

X > 10/5

X > 2

<h3>2 < X < 7</h3>

8 0
4 years ago
Nine less than a number is no more than 8 and is no less than 3
podryga [215]
X - 9 is greater than or equal to 3 and less than or equal to 8. can’t format correctly sorry
8 0
4 years ago
What is the surface area of the square pyramid?
exis [7]
Hope this helps .. sorry if it’s wrong .

4 0
4 years ago
Other questions:
  • In the xy- plane, the graph of the equation y + 3x + 5 is a line that intersects the y-axis at (0,b) what is the value of b?
    11·1 answer
  • [(-1,2), (0, 2), (5,2)) is a function.<br> True<br> False
    10·1 answer
  • Suppose 2 circles are constructed. Under what conditions do the circles have 1 point in common, 2 points in common, no points in
    13·1 answer
  • Find the value of x to the nearest tenth.
    5·1 answer
  • AWNSER ASAP!!!!!!! whats the median for 17,25,23,200,14
    14·1 answer
  • The capacity of a container is 1478 milliliters. convert this to liters
    5·1 answer
  • Tú tienes la mitad de lo que tenías y tendrás el triple de lo que tienes. Si tuvieras lo que tienes, tenías y tendrás, tendrías
    10·1 answer
  • Please help me guysss
    15·1 answer
  • Find the missing side length.
    15·1 answer
  • While grading her students' most recent quiz on equation solving, Mrs. Jones calculated that approximately forty percent of her
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!