The volume of the resulting solid of revolution about the x-axis will be π/7 cubic units.
<h3>What is a solid revolution?</h3>
When a figure is revolved around some fixed axis, the whole three-dimensional solid formed from the area that it swaps out is called a solid of revolution.
The region under the function over the interval [0,1] on the x-axis revolved about the x-axis.
f(x) = x³
Then the volume of the resulting solid of revolution will be given as
![\rm V = \int _0^1 \pi [f(x)]^2 \ dx](https://tex.z-dn.net/?f=%5Crm%20V%20%3D%20%5Cint%20_0%5E1%20%5Cpi%20%5Bf%28x%29%5D%5E2%20%5C%20dx)
Then we have
![\rm V = \int _0^1 \pi (x^3)^2 \ dx\\\\\\V = \pi \int _0^1 x^6 \ dx\\\\\\V = \dfrac{\pi}{7} \left [ x^7 \right ] _0^1\\](https://tex.z-dn.net/?f=%5Crm%20V%20%3D%20%5Cint%20_0%5E1%20%5Cpi%20%28x%5E3%29%5E2%20%5C%20dx%5C%5C%5C%5C%5C%5CV%20%3D%20%5Cpi%20%5Cint%20_0%5E1%20%20x%5E6%20%5C%20dx%5C%5C%5C%5C%5C%5CV%20%3D%20%5Cdfrac%7B%5Cpi%7D%7B7%7D%20%5Cleft%20%5B%20x%5E7%20%5Cright%20%5D%20_0%5E1%5C%5C)
V = π/7 (1⁷ - 0⁷)
V = π/7 cubic units
Then the volume of the resulting solid of revolution will be π/7 cubic units.
Learn more about solid of revolution here:
brainly.com/question/338504
#SPJ4