This can be solved a couple of ways. One way is to use the Pythagorean theorem to write equations for the magnitude from the components of the forces. That is what was done in the graph here.
Another way is to use the Law of Cosines, which lets you make direct use of the angle between the vectors.
.. 13 = a^2 +b^2 -2ab*cos(90°)
.. 19 = a^2 +b^2 -2ab*cos(120°)
Subtracting the first equation from the second, we have
.. 6 = -2ab*cos(120°)
.. ab = 6
Substituting this into the first equation, we have
.. 13 = a^2 +(6/a)^2
.. a^4 -13a^2 +36 = 0
.. (a^2 -9)(a^2 -4) = 0
.. a = ±3 or ±2
The magnitudes of the two forces are 2N and 3N, in no particular order.
answer : the BC is measure by 4, and also if you wanna add this the AB is measure by 3.
Step-by-step explanation:
We solve the inequality by subtracting 56.50 from both sides of the equation,
10.45b + 56.50 - 56.50 < 292.67 - 56.50
10.45b < 236.17
Then, divide both sides of the inequality by 10.45
b < 22.6
The solution suggests that the number of boxes than can be loaded on a truck without exceeding the weight limit of the truck should always be lesser than 22.6. Since we are talking about number of boxes, the maximum number of boxes that can be loaded should only be 22.
The answer is c.
Since a^2+b^2=c^2, b^2=c^2-a^2 thus,
16=4-b^2= srt. of 12
Answer: -4
Step-by-step explanation: