The Answer is 100.43781641
The equation for this is
$.65p=c
In order to find the total cost we must
have a number in which is multiplied by
$.65.
Answer:
Step-by-step explanation:
Approximate the integral
by dividing the region
with vertices (0,0),(4,0),(4,2) and (0,2) into eight equal squares.
Find the sum 
Since all are equal squares, so
for every 

Thus, 
Evaluating the iterate integral ![\int\limits^4_0 \int\limits^2_0 {(x+y)} \, dydx=\int\limits^4_0 {[xy+\frac{y^2}{2} ]}\limits^2_0 \, dx =\int\limits^4_0 {[2x+2]}dx\\\\=[x^2+2x]\limits^4_0=24.](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%5Cint%5Climits%5E2_0%20%7B%28x%2By%29%7D%20%5C%2C%20dydx%3D%5Cint%5Climits%5E4_0%20%7B%5Bxy%2B%5Cfrac%7By%5E2%7D%7B2%7D%20%5D%7D%5Climits%5E2_0%20%5C%2C%20dx%20%3D%5Cint%5Climits%5E4_0%20%7B%5B2x%2B2%5D%7Ddx%5C%5C%5C%5C%3D%5Bx%5E2%2B2x%5D%5Climits%5E4_0%3D24.)
Thus, 
24.31 ÷ 2.6 = 243.1 ÷ 26 = 9.35