The original price was $64
Hope this helps:)
The problem is asking how much each person will need to pay. Simplifying the problem into an equation with variables (an algorithm) will greatly help you solve it:
S = Sales Tax = $ 7.18 per any purchase
A = Admission Ticket = $ 22.50 entry price for one person (no tax applied)
F = Food = $ 35.50 purchases for two people
We know the cost for one person was: (22.50) + [(35.50/2) + 7.18] =
$ 47.43 per person. Now we can check each method and see which one is the correct algorithm:
Method A)
[2A + (F + 2S)] / 2 = [ (2)(22.50) + [35.50 + (2)(7.18)] ]/ 2 = $47.43
Method A is the correct answer
Method B)
[(2A + (1/2)F + 2S) /2 = [(2)(22.50) + 35.50(1/2) + (2)7.18] / 2 = $38.55
Wrong answer. This method is incorrect because the tax for both tickets bought are not being used in the equation.
Method C)
[(A + F) / 2 ]+ S = [(22.50 + 35.50) / 2 ] + 7.18 = $35.93
Wrong answer. Incorrect Method. The food cost is being reduced to the cost of one person but admission price is set for two people.
multiply 40 by 30% to find the discount then subtract
40 * 0.30 = 12
40-12 = 28
they would cost $28
Answer:
3.5972174e+13 could i get brainliest please?
Step-by-step explanation:
Answer:
By the Empirical Rule, in 99.7% of the games that Aubree bowls she scores between 148 and 232Step-by-step explanation:The Empirical Rule states that, for a normally distributed random variable:68% of the measures are within 1 standard deviation of the mean.95% of the measures are within 2 standard deviation of the mean.99.7% of the measures are within 3 standard deviations of the mean.In this problem, we have that:Mean = 190Standard deviation = 14Using the empirical rule, what percentage of the games that Aubree bowls does she score between 148 and 232?148 = 190 - 3*14So 148 is 3 standard deviations below the mean.232 = 190 + 3*14So 232 is 3 standard deviations above the meanBy the Empirical Rule, in 99.7% of the games that Aubree bowls she scores between 148 and 232