Answer:
Loading..
Step-by-step explanation:
Answer:
f−1(f(x)) = f(f−1(x)) = x
Step-by-step explanation:
Follow this simple example using the function f(x) = x + 2
f(x) = x + 2
NOw we find the inverse function f^(1)(x).
y = x + 2
x = y + 2
y = x - 2
f^(-1)(x) = x - 2
The inverse function is f^(-1)(x) = x - 2
Now we do the two compositions of functions:
f^(-1)(f(x)) = x + 2 - 2 = x
f(f^(-1)(x)) = x - 2 + 2 = x
Both are equal to x.
Answer: f−1(f(x)) = f(f−1(x)) = x
Answer:
a = (-7)
Step-by-step explanation:
Firstly clear the bracket...,
-6(-2 + a) = 12 - 6a
Then substitute the simplified version in place of bracket...,
; 12 - 6a = 54
; -6a = 54 - 12
; -6a = 42...then divide both sides by (-6)
Therefore...., a = (-7)
A=Lw
P=2L+2w
216=Lw
W=216/L...substitute to Perimeter equation
60=2L+2(216/L)
60L=2L^2 + 432
2L^2-60L+432=0
2(L^2 - 30L + 216)=0
2(L-18)(L-12)=0
L=12, W=18 or L=18, W=12