Let current be I, charge be Q and time be t.
Here we are provided with,
I = 0.72A
t = 4s / 60s / 180s / 7s / 0.5s
We know,
I = Q/t
Case I
---------
When, t = 4s
0.72 = Q/4
Q = 0.72 * 4 = 2.88C
Case II
----------
When, t = 60s
0.72 = Q/60
Q = 0.72 * 60 = 43.2C
Case III
-----------
When, t = 180s
0.72 = Q/180
Q = 0.72 * 180 = 129.6C
Case IV
-----------
When, t = 7s
0.72 = Q/7
Q = 0.72 * 7 = 5.04C
Case V
----------
When, t = 0.5s
0.72 = Q/0.5
Q = 0.72 * 0.5 = 0.36C
Answer:
-5 V
Explanation:
The charged particle (which is positively charged) moves from point A to B, and its kinetic energy increases: it means that the particle is following the direction of the field, so its potential energy is decreasing (because it's been converted into potential energy), therefore it is moving from a point at higher potential (A) to a point at lower potential (B). This means that the value
vb−va
is negative.
We can calculate the potential difference between the two points by using the law of conservation of energy:

where:
is the change in kinetic energy of the particle
is the charge of the particle
is the potential difference
Re-arranging the equation, we can find the value of the potential difference:

Answer:
Explanation:
The period of oscillation will remain unchanged because the period of oscillation of a pendulum does not depend upon the mass of the bob . Here monkey along with bunch of banana represents bob .
When the monkey and banana were at height h /2 , they have potential energy as well as kinetic energy . banana is separated from the system . It carried its total energy along with it . But the energy of monkey remained intact with it . So it will keep on moving as usual . So it will attain the same maximum height as before .
Hence the amplitude of oscillation too will remain unchanged .
Answer:
a= 0.5m/s^2
Explanation:
Force applied on an object is known as
F=m.a (Newton's second law states it)
a=F/m
a=5/10=0.5m/s^2
Because they are different they all show different traits.