The force of attraction between 2 charged spheres can be explained by Coulomb's law,
It states the force of attraction is directly proportional to the magnitudes of the charges and inversely proportional to the square of the distance between the charges.
/

where F - force of attraction/repulsion
q₁ and q₂ - charges of the 2 spheres
k - Coulomb's law constant
r - distance between the spheres
In the question given, the charges of the spheres remain constant in both instances, only distance changes. Therefore (kq₁q₂) = c which is a constant
then F = c / r²
first instance
6 x 10⁻⁹ N = c/ (20 cm)² ---1)
F = c/(10 cm)² --- 2)
2) / 1)

F = 6 x 10⁻⁹ x 4
F = 2.4 x 10⁻⁸ N
<span>The amount of heat energy needed to increase the temperature of a substance by </span>

<span> is given by:
</span>

<span>
where m is the mass of the substance, Cs is its specific heat capacity and </span>

<span> is the increase in temperature of the substance.
In this problem, we have a certain mass m of gold, with specific heat capacity </span>

<span>, to which we add Q=2825 J of energy. Its temperature increases by </span>

<span>. Therefore, if we re-arrange the previous equation, we can find the mass of the block of gold:
</span>

<span>
So, the correct answer is B.</span>
Answer:

Explanation:
When the space is filled with dielectric, an induced opposite sign charge appears on each surface of the dielectric. This induced charge has a charge density related to the charge density on the electrodes as follows:

Where E is the eletric field with dielectric and
is the electric filed without it. Recall that
is given by:

Replacing this and solving:
