Answer:
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Begin with the right hand side:
R.H.S = cot θ =
L.H.S = sin θ cos θ
so, sin θ cos θ ≠ 
So, the equation is not a trigonometric identity.
=========================================================
<u>Anther solution:</u>
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Assume θ with a value and substitute with it.
Let θ = 45°
So, L.H.S = sin θ cos θ = sin 45° cos 45° = (1/√2) * (1/√2) = 1/2
R.H.S = cot θ = cot 45 = 1
So, L.H.S ≠ R.H.S
So, sin θ cos θ = cot θ is not a trigonometric identity.
Answer:
ok ok ok i gotchuu
Step-by-step explanation:
Pineapple does not belong on pizza change my mind
Answer:
150m by 300 m
Step-by-step explanation:
150×300=45000
all sides add up to 900m
150+150+300+300
Answer:
Find the Least Common Denominator (LCD) of all the denominators in the complex fractions.
Multiply this LCD to the numerator and denominator of the complex fraction.
Simplify, if necessary.