3p^4(4p^4 + 7p^3 + 4p + 1)
<span>=<span><span>(<span>3<span>p^4</span></span>)</span><span>(<span><span><span><span>4<span>p^4</span></span>+<span>7<span>p^3</span></span></span>+<span>4p</span></span>+1</span>)</span></span></span><span>=<span><span><span><span><span>(<span>3<span>p^4</span></span>)</span><span>(<span>4<span>p^4</span></span>)</span></span>+<span><span>(<span>3<span>p^4</span></span>)</span><span>(<span>7<span>p^3</span></span>)</span></span></span>+<span><span>(<span>3<span>p^4</span></span>)</span><span>(<span>4p</span>)</span></span></span>+<span><span>(<span>3<span>p^4</span></span>)</span><span>(1)</span></span></span></span><span>=<span><span><span><span>12<span>p^8</span></span>+<span>21<span>p^7</span></span></span>+<span>12<span>p^5</span></span></span>+<span>3<span>p^<span>4</span></span></span></span></span>
Answer:
A.
they choose candidates before the general election
Answer:
50 50
Step-by-step explanation:
Answer: Choice A) 4/5
-------------------------------------------
Work Shown:
cos^2(theta) + sin^2(theta) = 1
(-3/5)^2 + sin^2(theta) = 1
9/25 + sin^2(theta) = 1
9/25 + sin^2(theta) - 9/25 = 1 - 9/25
sin^2(theta) = 1 - 9/25
sin^2(theta) = 25/25 - 9/25
sin^2(theta) = (25 - 9)/25
sin^2(theta) = 16/25
sqrt[sin^2(theta)] = sqrt[16/25]
sin(theta) = 4/5
The fact that sine is positive in quadrant 2 means that the result is positive.