Answer:
250 boys
Step-by-step explanation:
sum the parts of the ratio, 5 + 3 = 8 parts
Divide the total by 8 to find the value of 1 part of the ratio
400 ÷ 8 = 50 , then
number of boys = 5 × 50 = 250
1
∫ f(x) dx = x⁵/5 + 3x⁴/4 - 5x³/3
-1
[1⁵/5 + 3⁴/4 - 5³/3] - [ -1⁵/5 -3⁴/4 +5³/3]
plug that into your calculator and that's your rate of change
The answer is D
You need to make at least $200 so that is greater then or = to. You subtract 92 from 200 which gives you 108. From there you take 108/4 which is 27
Answer:
c
Step-by-step explanation:
the answer is 201.6 but c is the closest
Answer:
![(b)\ P(Green) = \frac{3}{8} ; P(Yellow) = \frac{1}{8}](https://tex.z-dn.net/?f=%28b%29%5C%20P%28Green%29%20%3D%20%5Cfrac%7B3%7D%7B8%7D%20%3B%20P%28Yellow%29%20%3D%20%5Cfrac%7B1%7D%7B8%7D)
![(c)\ P(Green) = \frac{1}{4} ; P(Yellow) = \frac{1}{4}](https://tex.z-dn.net/?f=%28c%29%5C%20P%28Green%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%3B%20P%28Yellow%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D)
Step-by-step explanation:
Given
![P(Red) = \frac{2}{7}](https://tex.z-dn.net/?f=P%28Red%29%20%3D%20%5Cfrac%7B2%7D%7B7%7D)
![P(Blue) = \frac{3}{14}](https://tex.z-dn.net/?f=P%28Blue%29%20%3D%20%5Cfrac%7B3%7D%7B14%7D)
Required
Which completes the model
Let the remaining probability be x.
Such that:
![P(Red) + P(Blue) + x = 1](https://tex.z-dn.net/?f=P%28Red%29%20%2B%20%20P%28Blue%29%20%2B%20x%20%3D%201)
Make x the subject
![x = 1 - P(Red) - P(Blue)](https://tex.z-dn.net/?f=x%20%3D%201%20-%20P%28Red%29%20-%20P%28Blue%29)
So, we have:
![x = 1 - \frac{2}{7} - \frac{3}{14}](https://tex.z-dn.net/?f=x%20%3D%201%20-%20%5Cfrac%7B2%7D%7B7%7D%20-%20%5Cfrac%7B3%7D%7B14%7D)
Solve
![x = \frac{14 - 4 - 3}{14}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B14%20-%204%20-%203%7D%7B14%7D)
![x = \frac{7}{14}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B7%7D%7B14%7D)
![x = \frac{1}{2}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
This mean that the remaining model must add up to 1/2
![(a)\ P(Green) = \frac{2}{7} ; P(Yellow) = \frac{2}{7}](https://tex.z-dn.net/?f=%28a%29%5C%20P%28Green%29%20%3D%20%5Cfrac%7B2%7D%7B7%7D%20%3B%20P%28Yellow%29%20%3D%20%5Cfrac%7B2%7D%7B7%7D)
![P(Green) + P(Yellow)= \frac{2}{7} + \frac{2}{7}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B2%7D%7B7%7D%20%2B%20%5Cfrac%7B2%7D%7B7%7D)
Take LCM
![P(Green) + P(Yellow)= \frac{2+2}{7}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B2%2B2%7D%7B7%7D)
![P(Green) + P(Yellow)= \frac{4}{7}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B4%7D%7B7%7D)
This is false because: ![\frac{4}{7} \ne \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B7%7D%20%5Cne%20%5Cfrac%7B1%7D%7B2%7D)
![(b)\ P(Green) = \frac{3}{8} ; P(Yellow) = \frac{1}{8}](https://tex.z-dn.net/?f=%28b%29%5C%20P%28Green%29%20%3D%20%5Cfrac%7B3%7D%7B8%7D%20%3B%20P%28Yellow%29%20%3D%20%5Cfrac%7B1%7D%7B8%7D)
![P(Green) + P(Yellow)= \frac{3}{8} + \frac{1}{8}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B3%7D%7B8%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D)
Take LCM
![P(Green) + P(Yellow)= \frac{3+1}{8}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B3%2B1%7D%7B8%7D)
![P(Green) + P(Yellow)= \frac{4}{8}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B4%7D%7B8%7D)
![P(Green) + P(Yellow)= \frac{1}{2}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B1%7D%7B2%7D)
This is true
![(c)\ P(Green) = \frac{1}{4} ; P(Yellow) = \frac{1}{4}](https://tex.z-dn.net/?f=%28c%29%5C%20P%28Green%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%3B%20P%28Yellow%29%20%3D%20%5Cfrac%7B1%7D%7B4%7D)
![P(Green) + P(Yellow)= \frac{1}{4} + \frac{1}{4}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B4%7D)
Take LCM
![P(Green) + P(Yellow)= \frac{1+1}{4}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B1%2B1%7D%7B4%7D)
![P(Green) + P(Yellow)= \frac{2}{4}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B2%7D%7B4%7D)
![P(Green) + P(Yellow)= \frac{1}{2}](https://tex.z-dn.net/?f=P%28Green%29%20%2B%20P%28Yellow%29%3D%20%5Cfrac%7B1%7D%7B2%7D)
This is true
Other options are also false