Check the picture below.
make sure your calculator is in Degree mode.
<span>3down votefavorite1Find minimum and maximum value of function <span>f(x,y)=3x+4y+|x−y|</span> on circle<span>{(x,y):<span>x2</span>+<span>y2</span>=1}</span>I used polar coordinate system. So I have <span>x=cost</span> and <span>y=sint</span> where <span>t∈[0,2π)</span>.Then i exploited definition of absolute function and i got:<span>h(t)=<span>{<span><span>4cost+3sintt∈[0,<span>π4</span>]∪[<span>54</span>π,2π)</span><span>2cost+5sintt∈(<span>π4</span>,<span>54</span>π)</span></span></span></span>Hence i received following critical points (earlier i computed first derivative):<span>cost=±<span>45</span>∨cost=±<span>2<span>√29</span></span></span>Then i computed second derivative and after all i received that in <span>(<span>2<span>√29</span></span>,<span>5<span>√29</span></span>)</span> is maximum equal <span>√29</span> and in <span>(−<span>45</span>,−<span>35</span>)</span> is minimum equal <span>−<span>235</span></span><span>
</span></span>
Because the ones place is under 5, we round down, and 392 becomes 390 when rounded to the nearest 10
Answer:
Lo siento amigo mío pero ha llegado el momento. Necesitas hacer tu propia tarea porque la profunda y oscura verdad es ... nadie te ayudará cuando falles en la prueba. Por eso estoy aquí para llevarte. Deja de pedir respuestas y pruébalas tú mismo. Pídele ayuda a tu maestro. Pero deja de pedirle respuestas a la gente. Eso es definitivamente una trampa.
Step-by-step explanation: