Answer:
approximately 6.708 feet
Step-by-step explanation:
We use the Pythagorean theorem to solve the problem, using 3 feet and 6 feet as the legs of a right angle triangle. The diagonal of the screen is therefore the "hypotenuse" of this right angle triangle, and can be determined via the formula:

which is approximately 6.708 feet
Answer:
The orange one is the answer
Step-by-step explanation:
The easiest way to find the solution is to plug in one of the coordinates that is located in the shaded area into each equation. If the equations make sense, as they do in the orange option, you have your answer.
Hope this helps you!
Start by doing the binomial expansion of (x+y)^6 where x represents success. This is
(x^6y^0) + 6(x^5y^1) +15(x^4y^2) +20(x^3y^3) +15(x^2y^4) +6(x^1y^5) +(x^0y^6)
We are interested in the x^3y^3 term which represents exactly 3 sucesses. Since the probalbility of sucess and failure are both .5 we should be able to figure this out just using the coefficients of the terms which is
20/64 = .3125 which is 31.25%
The first question is 2, 12, and 14 but i’m sorry i don’t know the second :(
Answer: In the resulting equation: " a² - 12a + 32 = 0 " ;
________________________________________________________
The "coefficient" of the "a" term is: " - 12" .
________________________________________________________
The "constant" is: " 32 " .
________________________________________________________
Explanation:
________________________________________________________
Let: "a = x² + 4 " .
Given: (x² + 4)² + 32 = 12x² + 48 ;
______________________________________________________
Factor: "12x² + 48" into " (x² + 4) " ;
"12x² + 48" = 12 (x² + 4) " ;
______________________________________________________
Given: (x² + 4)² + 32 = 12x² + 48 ;
rewrite as; "a² + 32 = 12a " ;
Subtract "12a" from each side of the equation;
"a² + 32 - 12a = 12a - 12a ;
to get:
" a² - 12a + 32 = 0 " .
___________________________________________________
The coefficient of the "a" term; that is:
The "coefficient" of " -12a" ; is: "- 12" .
The constant is: "32<span>" .
</span>___________________________________________________