Answer:
1. rate = 30, base = 40, percentage = 12
2. rate = 6, base = 24, percentage = 25
3. rate = 16, base = 64, percentage = 25
4. rate = 4, base = 50, percentage = 20
5. rate = 75, base = 80, percentage = 60
Step-by-step explanation:
Answer:
-sinx
Step-by-step explanation:
a trig identity that is crucial to solving this problem is: sin^2 + cos^2 = 1
with knowing that, you can manipulate that and turn it into 1 - sin^2x = cos^x
so 1-sin^2x/sinx - cscx becomes cos^2x/sinx - cscx
it is also important to know that cscx is the same thing as 1/sinx
knowing this information, cscx can be replaced with 1/sinx
(cos^2x)/(sinx - 1/sinx)
now sinx and 1/sinx do not have the same denominator, so we need to multiply top and bottom of sinx by sinx; it becomes....
cos^2x
---------------------
(sin^2x - 1)/sinx
notice how in the denominator it has sin^2x-1 which is equal to -cos^2x
so now it becomes:
cos^2x
--------------
-cos^2x/sinx
because we have a fraction over a fraction, we need to flip it
cos^2x sinx
---------- * ----------------
1 - cos^2x
because the cos^2x can cancel out, it becomes 1
now the answer is -sinx
Area = Length x width
Area = 12 x 8.6
Area = 103.2 square yards.
Answer:
(x,y)=(0,7.333)
Step-by-step explanation:
We are required to:
Maximize p = x + 2y subject to
- x + 3y ≤ 22
- 2x + y ≤ 14
- x ≥ 0, y ≥ 0.
The graph of the lines are plotted and attached below.
From the graph, the vertices of the feasible region are:
At (0,7.333), p=0+2(7.333)=14.666
At (4,6), p=4+2(6)=4+12=16
At (0,0), p=0
At (7,0), p=7+2(0)=7
Since 14.666 is the highest, the maximum point of the feasible region is (0,7.333).
At x=0 and y=7.333, the function p is maximized.