Answer:
First car: 30 gallons
Second car: 35 gallons
Step-by-step explanation:
Hi, to answer this question we have to write a system of equations:
Total gas consumption was 65:
x+y=65
Where:
x = gallons consumed by the first car
y = gallons consumed by the second car
The first car has a fuel efficiency of 20 miles per gallon of gas and the second has a fuel efficiency of 30 miles per gallon of gas, the two cars went a combined total of 1650 miles:
x 20+y 30 = 1650
The system is:
x+y=65 (1)
x 20+y 30 = 1650 (2)
Isolating y on (1)
y = 65-x
Replacing y= 65-x on (2):
x 20+(65-x)30 = 1650
20x +1,950-30x= 1650
20x-30x= 1650-1950
-10x= -300
x= -300/-10
x = 30 gallons
Back to (1)
y =65-x
y =65-30
y= 35 gallons
Feel free to ask for more if needed or if you did not understand something.
Answer:
<h2><em><u>
y = -x - 1</u></em></h2>
Step-by-step explanation:
The line is going in a negative direction. This means that the line is negative. The slope is -1. The y- intercept is the coordinate (0,-1). SO the equation is y = -x - 1.
Your answer would be ( -12/5 x + 2 )
Answer:
f(2+h)=-(h+2/3)^2+1/4
f(x+h)=-(x+h-1/2)^2+1/4
Step-by-step explanation:
1. f(2+h)=(2+h)-(2+h)^2=2+h-4-4h-h^2=-h^2-3h-2=-(h^2+3h+2)
=-(h+2/3)^2+1/4
2. Let (x+h)=a, then rewrite the equation into f(a)=a-a^2.
a-a^2=-(a^2-a)=-[(a-1/2)^2-1/4]=-(a-1/2)^2+1/4.
Insert a=x+h, f(x+h)=-(x+h-1/2)^2+1/4