For a function to be continuous at an x-value, say -17, you need to make sure two things line up:
The limit from the left equals the limit from the right.

This limit equals the functions value.

The left hand limit involves the first piece, f(x) = 20x + 1:
![\begin{aligned} \lim_{x \to -17^{-}} f(x) &= \lim_{x \to -17^{-}} (20x+1)\\[0.5em]&= 20(-17)+1\\[0.5em]&= -339\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B-%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B-%7D%7D%20%2820x%2B1%29%5C%5C%5B0.5em%5D%26%3D%20%20%2020%28-17%29%2B1%5C%5C%5B0.5em%5D%26%3D%20%20%20-339%5Cendaligned%7D)
The right hand limit invovles the second piece, f(x) = -10x^2:
![\begin{aligned} \lim_{x \to -17^{+}} f(x) &= \lim_{x \to -17^{+}} (-10x^2)\\[0.5em]&= -10\cdot (-17)^2\\[0.5em]&= -2890\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B%2B%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B%2B%7D%7D%20%28-10x%5E2%29%5C%5C%5B0.5em%5D%26%3D%20%20%20-10%5Ccdot%20%28-17%29%5E2%5C%5C%5B0.5em%5D%26%3D%20%20%20-2890%5Cendaligned%7D)
Since the two one-sided limits don't match, the function is not continuous at x=-17.
Answer:
Input work is the work done on a machine as the input force acts through the input distance. This is in contrast to output work which is a force that is applied by the body or system to something else. Output work is the work done by a machine as the output force acts through the output distance.Jan 15, 2020 hsysvd xhs dhdb shsbdhd dhs dys dhd shdbdyd hzgsvdyd xgdbd
Answer:
sorry
Step-by-step explanation:
A bar graph is a chart that uses bars to show comparisons of different types of data. The bars can either be horizontal or vertical. They are always straight if I’m not mistaken