Answer:
The standard form of the equation of the parabola is (y + 2)² = 8 (x - 3)
Step-by-step explanation:
The standard form of the equation of a parabola is (y - k)² = 4p (x - h), where
- The vertex of the parabola is (h , k)
- The focus is (h + p, k)
∵ The vertex of the parabola is (3 , -2)
∴ h = 3 and k = -2
∵ The focus is (5 , -2)
∴ h + p = 5
- Substitute h by 3 to find p
∵ 3 + p = 5
- Subtract 3 from both sides
∴ p = 2
∵ The standard form of the equation of the parabola is (y - k)² = 4p (x - h)
- Substitute the values of h , k , and p in the equation
∴ (y - -2)² = 4(2) (x - 3)
∴ (y + 2)² = 8 (x - 3)
The standard form of the equation of the parabola is (y + 2)² = 8 (x - 3)
Number one is A ) 4 units to the left
Answer:
x for the first one is equal to-4
Answer:
Please check the explanation.
Step-by-step explanation:
<u>Calculating the area of the outer rectangle:</u>
Given
- The length outer rectangle = l = 3x - 1
- The width of outer rectangle = w = 5x + 2
Thus,
The area of the outer rectangle:





<u>Calculating the area of the inner rectangle:</u>
Given
- The length inner rectangle = l = x + 7
- The width of inner rectangle = w = x
Thus,
The area of the outer rectangle:
A = wl
= x(x+7)
= x² + 7
<u>Calculating the area of the shaded region:</u>
As
The area of the outer rectangle = 15x² + x - 2
The area of the inner rectangle = x² + 7
- The area of the shaded region can be determined by subtracting the area of the inner rectangle from the area of the outer rectangle.
Thus,
shaded region Area = Outer Rectangle Area - Inner Rectangle Area
= 15x² + x - 2 - (x² + 7)
= 15x² + x - 2 - x² - 7
= 14x² + x - 9
Therefore, the Area of the shaded region is: 14x² + x - 9