1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
2 years ago
12

1.1 How many grams of can of apple pie filling Chantel is going to use in the Apple (2) Cinnamon Cake.​

Mathematics
1 answer:
Scilla [17]2 years ago
4 0

The number of grams of canned apple that Chantel needs for her apple-cinnamon cake is about 1400 grams.

<h3>How to calculate the amount of canned apple that Chantel needs?</h3>

To know the amount of canned apple that Chantel needs for her apple and cinnamon cake recipe, we must review the amount of apple that she needs for the filling of her cake.

According to the basic recipe to make this cake, we need 6 to 8 apples. Taking into account that each apple weighs about 200g, we can infer that Chantel is going to use about 1400g of canned apple as shown below.

On average we need 7 apples.

  • 6 + 8 = 14
  • 14 ÷ 2 = 7

Each apple weighs 200g, so 7 apples would be 1400g.

  • 7 × 200g = 1400g

Based on the above, Chantel needs 1400g of canned apple.

Learn more about grams in: brainly.com/question/12127497

#SPJ1

You might be interested in
3times15 hhhhhhhhhhheeeeellllllppppp
lidiya [134]
Your answer would be 45
X
6 0
2 years ago
Read 2 more answers
SOMEONE PLEASE HELP WILL MARK BRAINLIEST
Mashutka [201]

Radical form for 112 would be 4{7 and then I think you can just search up how to reduce the 4 to 7 i don’t have the symbol btw
4 0
3 years ago
Helppppppppppp:)))))))))
Whitepunk [10]

Hi there!

We are given the set of ordered pairs below:

\large \boxed{(3, - 1),(2, - 2),(0,2),(2,1)}

1. What is the domain?

  • Domain is a set of all x-values in one set of ordered pairs. So what are the x-values that I am talking about? In ordered pairs, we define x and y which both have relation to each others which we can write as (x,y). That's right, the domain is set of all x-values from ordered pairs.

Therefore, we gather only x-values from (x,y). Hence, the domain is {3,2,0,2}. Whoops! Something is not right. As we learn in Set Theory that we don't write the same or repetitive in a set. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>c</u><u>t</u><u>u</u><u>a</u><u>l</u><u> </u><u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>0</u><u>,</u><u>2</u><u>,</u><u>3</u><u>}</u>

2. What is the range?

  • Because domain is set of all x-values. Then what do you think the range is? That's right! The range is <u>s</u><u>e</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>a</u><u>l</u><u>l</u><u> </u><u>y</u><u>-</u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>s</u><u>.</u> If you got this right before looking up the underlined words then a handclap for you! So how do we find range? Simple, we just do like finding the domain in the Q1, except we gather the y-values in (x,y) instead and make sure that we don't write same number!

Therefore, gather y-values from the ordered pairs. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>n</u><u>g</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>-</u><u>2</u><u>,</u><u>-</u><u>1</u><u>,</u><u>1</u><u>,</u><u>2</u><u>}</u>

3. Is the relation a function?

  • All functions are relations but not all relations are functions. Function is a set of ordered pairs where <u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>n</u><u>o</u><u>t</u><u> </u><u>r</u><u>e</u><u>p</u><u>e</u><u>t</u><u>i</u><u>t</u><u>i</u><u>v</u><u>e</u><u> </u><u>o</u><u>r</u><u> </u><u>i</u><u>n</u><u> </u><u>a</u><u> </u><u>s</u><u>e</u><u>t</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u>r</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u>n</u><u>o</u><u>t</u><u> </u><u>b</u><u>e</u><u> </u><u>m</u><u>o</u><u>r</u><u>e</u><u> </u><u>t</u><u>h</u><u>a</u><u>n</u><u> </u><u>o</u><u>n</u><u>e</u><u> </u><u>s</u><u>a</u><u>m</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>.</u> Consider the following relation: (1,1),(1,2) - Oh, looks like in a set of ordered pairs, there are two same domains which make it only a relation, and not a function. On the other hand, (1,1),(2,2) - Looking good! No same or repetitive domain, making it indeed a function.

Consider the domain from Q1 and see if there are two same values of x in a set. Looks like the relation is not a function since there are same x-values which are 2 in a set, making it only a relation. Hence, the relation is not a function.

These are all 3 answers along with an explanation. Let me know if you have any doubts regarding Relations and Functions.

<em>F</em><em>r</em><em>o</em><em>m</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Q</em><em>1</em><em>'</em><em>s</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>,</em><em> </em><em>t</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>a</em><em>r</em><em>e</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em>s</em><em>,</em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>c</em><em>h</em><em>o</em><em>o</em><em>s</em><em>e</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>u</em><em>n</em><em>d</em><em>e</em><em>r</em><em>l</em><em>i</em><em>n</em><em>e</em><em>)</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>n</em><em>o</em><em>t</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>f</em><em>i</em><em>r</em><em>s</em><em>t</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em><em>2</em><em>'</em><em>s</em><em>)</em><em>.</em><em> </em>

Good luck on your assignment, have a nice day!

4 0
2 years ago
Could anyone help me? this is hard i dont understand
emmainna [20.7K]

Answer:

can you please give me an example?

i will help you but give me your teacher's example

Step-by-step explanation:

let me know if it's done

3 0
2 years ago
Terry and Callie do word processing. For a certain prospectus Callie can prepare it two hours faster than Terry can. If they wor
Dahasolnce [82]

Time taken by jerry alone is 10.1 hours

Time taken by callie alone is 8.1 hours

<u>Solution:</u>

Given:- For a certain prospectus Callie can prepare it two hours faster than Terry can

Let the time taken by Terry be "a" hours

So, the time taken by Callie will be (a-2) hours

Hence, the efficiency of Callie and Terry per hour is \frac{1}{a-2} \text { and } \frac{1}{a} \text { respectively }

If they work together they can do the entire prospectus in five hours

\text {So, } \frac{1}{a-2}+\frac{1}{a}=\frac{1}{5}

On cross-multiplication we get,

\frac{a+(a-2)}{(a-2) \times a}=\frac{1}{5}

\frac{2 a-2}{(a-2) \times a}=\frac{1}{5}

On cross multiplication ,we get

\begin{array}{l}{5 \times(2 a-2)=a \times(a-2)} \\\\ {10 a-10=a^{2}-2 a} \\\\ {a^{2}-2 a-10 a+10=0} \\\\ {a^{2}-12 a+10=0}\end{array}

<em><u>using quadratic formula:-</u></em>

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

x=\frac{12 \pm \sqrt{144-40}}{2}

\begin{array}{l}{x=\frac{12 \pm \sqrt{144-40}}{2}} \\\\ {x=\frac{12 \pm \sqrt{104}}{2}} \\\\ {x=\frac{12 \pm 2 \sqrt{26}}{2}} \\\\ {x=6 \pm \sqrt{26}=6 \pm 5.1} \\\\ {x=10.1 \text { or } x=0.9}\end{array}

If we take a = 0.9, then while calculating time taken by callie = a - 2 we will end up in negative value

Let us take a = 10.1

So time taken by jerry alone = a = 10.1 hours

Time taken by callie alone = a - 2 = 10.1 - 2 = 8.1 hours

3 0
3 years ago
Other questions:
  • Can someone please help me with this question ASAP.It is due tommorrow.
    14·1 answer
  • Reginald read his novel three nights in a row. Each night, he read for
    11·1 answer
  • ( PLEASE HELPPPPPPPPPP) (WILL MARK BRAINLIEST)
    12·2 answers
  • Carlie’s Cell Phone Store has a gross income of $1,287,684 and deductions of $598,982. What is the federal corporate income tax?
    11·1 answer
  • I attached a pic please help
    11·1 answer
  • What is the value of pi
    12·1 answer
  • Find the area in the first quadrant bounded by the arc of the circle described by the polar equation r = 2 sin θ + 4 cos θ. The
    10·1 answer
  • A rectangular garden has a total area of 48 yards.Draw and label two possible rectangular gardens with diffrent side lenghts tha
    9·1 answer
  • What is the distance between (0,0) and (8, 15) on the coordinate plane?
    9·1 answer
  • Circle P is centered at the origin. Which of the following statements can be used to
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!