Answer: The cost of one rose bush is $7 and the cost of one shrub is also $7
Step-by-step explanation:
The situtation can be represented by the systems of the equations.
10x + 4y = 98 x in this case is the cost of one rose bushes
9x + 9y = 126 y is the cost of one shrub.
Solve the system of equation using the elimination method.
10x +4y = 98
9x + 9y = 126 eliminate the y variable so you will have to multiply 9 on top and -4 down.
9(10x +4) = (98)(9)
-4(9x + 9y) = 126(-4)
You will now have the new two systems of equations
90x +36y = 882
-36x +-36y = -504 Now add the equations
0 + 54x = 378
54x = 378
x= 7
Now we know that the cost of one rose bush is 7 so we will plot it into one of the equations and solve for the cost of one shrub.
90(7) +36y=882
630 +36y = 882
-630 -630
36y = 252
y = 7
Check: 10(7) + 4(7)= 98
70 + 28 = 98
98= 98
so one rose bush is actually 7 dollars the same as 1 shrub.
Answer:
x > 7/4
Step-by-step explanation:
3(x + 7) < 7(x + 2)
Expand brackets: 3x + 21 < 7x + 14
Subtract 14 from both sides: 3x +7 < 7x
Subtract 3x from both sides: 7 < 4x
Divide both sides by 4: 7/4 < x
Therefore x > 7/4
Answer:
Vertices: (1,-1), (-11, -1); Foci: (-15, -1), (5, -1)
Step-by-step explanation:
Center at (-5,-1) because of the plus 5 added to the x and the plus 1 added to the y.
a(squared)=36 which means a=6 and a=distance from center to vertices so add and subtract 6 from the x coordinate since this is a horizontal hyperbola, which is (1,-1), (-11,-1). From there you dont need to find the focus since there is only one option for this;
Vertices: (1,-1), (-11, -1); Foci: (-15, -1), (5, -1)
Answer:
-2
Step-by-step explanation:
m=
Answer:
54.5
Step-by-step explanation: