Answer:

unit rate is similar to speed / velocity:

[<em>unit</em><em> </em><em>rate</em><em> </em><em>must</em><em> </em><em>have</em><em> </em><em>units</em><em> </em><em>including</em><em> </em><em>per</em><em> </em><em><</em><em>time</em><em>></em><em> </em>]
Answer:
The associative property
Step-by-step explanation:
:/ wait its u again lol
17. 9
18. 12
19. 16
20. 56
21. 143
22. 14
23. 27
24. 7
Going from 107 to 98 is (minus 9)
going from 98 to 90 is (minus 8)
going from 90 to 83 is (minus 7)
going from 83 to 77 is (minus 6)
following this pattern, the number after 77
is 77 minus 5 = 72
therefore your answer is 72
If you're using the app, try seeing this answer through your browser: brainly.com/question/2264253_______________
Evaluate the indefinite integral:

Trigonometric substitution:

then,
![\begin{array}{lcl} \mathsf{x=sin\,\theta}&\quad\Rightarrow\quad&\mathsf{dx=cos\,\theta\,d\theta\qquad\checkmark}\\\\\\ &&\mathsf{x^2=sin^2\,\theta}\\\\ &&\mathsf{x^2=1-cos^2\,\theta}\\\\ &&\mathsf{cos^2\,\theta=1-x^2}\\\\ &&\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\checkmark}\\\\\\ &&\textsf{because }\mathsf{cos\,\theta}\textsf{ is positive for }\mathsf{\theta\in \left[\dfrac{\pi}{2},\,\dfrac{\pi}{2}\right].} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Blcl%7D%20%5Cmathsf%7Bx%3Dsin%5C%2C%5Ctheta%7D%26%5Cquad%5CRightarrow%5Cquad%26%5Cmathsf%7Bdx%3Dcos%5C%2C%5Ctheta%5C%2Cd%5Ctheta%5Cqquad%5Ccheckmark%7D%5C%5C%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bx%5E2%3Dsin%5E2%5C%2C%5Ctheta%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bx%5E2%3D1-cos%5E2%5C%2C%5Ctheta%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bcos%5E2%5C%2C%5Ctheta%3D1-x%5E2%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bcos%5C%2C%5Ctheta%3D%5Csqrt%7B1-x%5E2%7D%5Cqquad%5Ccheckmark%7D%5C%5C%5C%5C%5C%5C%20%26%26%5Ctextsf%7Bbecause%20%7D%5Cmathsf%7Bcos%5C%2C%5Ctheta%7D%5Ctextsf%7B%20is%20positive%20for%20%7D%5Cmathsf%7B%5Ctheta%5Cin%20%5Cleft%5B%5Cdfrac%7B%5Cpi%7D%7B2%7D%2C%5C%2C%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D.%7D%20%5Cend%7Barray%7D)
So the integral

becomes

Integrate

by parts:


Substitute back for the variable x, and you get

I hope this helps. =)
Tags: <em>integral inverse sine function angle arcsin sine sin trigonometric trig substitution differential integral calculus</em>