Answer:
Let's denote:
Age of Oscar : x
Age of Oscar's sister : y
Then, we have:
3x = y(1)
2(x + 12) = y + 12(2)
Substitute y from (1) into (2), then:
=> 2(x + 12) = 3x + 12
=> 2x + 24 = 3x + 12
=> x = 24 - 12
=> x = 12
=> Oscar's current age: 12
Answer : 4 times
Here it's given that ,
- The height and base of the butterfly sitting on the stem (red butterfly) is two times greater than the height and base of the butterfly sitting on the flower .
And we need to find out how many times the area of red winged butterfly is greater than that of sitting on the flower (blue butterfly) .
Let us take ,
- base of blue butterfly be b
- height of blue butterfly be h
- Area be A .
Then ,
- base of red butterfly will be 2b .
- height of red butterfly will be 2h .
- Area be A' .
We know that ,
→ area of the triangle = 1/2 × base × height
So that ,
→ A/A' = (1/2 * b * h) ÷ (1/2 *2b *2h)
→ A/A' = bh/4bh
→ A/A' = 1/4
→ A' = 4A
<u>Henceforth</u><u> the</u><u> area</u><u> of</u><u> </u><u>blue</u><u> butterfly</u><u> is</u><u> </u><u>4</u><u> </u><u>times </u><u>greater</u><u> than</u><u> </u><u>that</u><u> of</u><u> </u><u>red </u><u>winged</u><u> butterfly</u><u> </u><u>.</u>
I hope this helps.
Answer:
(i) 16 cm.
(ii) 37 pieces in total.
Step-by-step explanation:
Through determining each lengths factors, it can be determined that every ribbon can be equally divided into 16 cm. long ribbons, so we already have our first answer. A 160 cm. long ribbon divided into 16 cm. long pieces will create 10 ribbons from that one piece; the 192 cm. long ribbon cut into the same 16 cm. lengths will equal 12 pieces of equal length; and the 240 cm. long ribbon will divide its 16 cm. lengths into 15 pieces of equal length. So the 10 pieces, plus the 12 pieces, plus the 15 pieces, will equal 37 total pieces, each 16 cm. in length.
Answer:

Step-by-step explanation:

Hopes this will help you :))
Answer: it’s not that hard.
Step-by-step explanation:
Divide the new number by your divisor, and write the result above the dividend as the next digit of the quotient. In the example, determine out how many times 6 can go into 10. Write that number (1) into the quotient above the dividend. Then multiply 6 by 1, and subtract the result from 10.