![\large\displaystyle\text{$\begin{gathered}\sf \pmb{1) \ 2x^3-7x^2+8x-3=0 } \end{gathered}$}](https://tex.z-dn.net/?f=%5Clarge%5Cdisplaystyle%5Ctext%7B%24%5Cbegin%7Bgathered%7D%5Csf%20%5Cpmb%7B1%29%20%5C%20%202x%5E3-7x%5E2%2B8x-3%3D0%20%7D%20%5Cend%7Bgathered%7D%24%7D)
Synthetic division is used since the equation is of the third degree. The divisors of -3 are 1, -1, 3, +3. So:
| 2 -7 8 -3
<u>1 | 2 -5 3</u>
| 2 -5 3 0
<u> 1 | 2 -3 </u>
2 -3 0
So the factorization is (x-1)² (2x-3)=0. So:
![\bf{ x_1=x_2=1 \qquad x_2=\dfrac{3}{2} }](https://tex.z-dn.net/?f=%5Cbf%7B%20x_1%3Dx_2%3D1%20%5Cqquad%20x_2%3D%5Cdfrac%7B3%7D%7B2%7D%20%20%7D)
![\large\displaystyle\text{$\begin{gathered}\sf \pmb{2) \ x^3-x^2-4=0 } \end{gathered}$}](https://tex.z-dn.net/?f=%5Clarge%5Cdisplaystyle%5Ctext%7B%24%5Cbegin%7Bgathered%7D%5Csf%20%5Cpmb%7B2%29%20%5C%20%20x%5E3-x%5E2-4%3D0%20%7D%20%5Cend%7Bgathered%7D%24%7D)
Synthetic division is used since the equation is of the third degree. The divisors of -4 are 1, -1, 2, -2, 4, -4. So:
| 1 -1 0 -4
<u>2 | 2 2 </u>
1 2 2 0
So the factorization is (x-2)(x²+x+2)=0 . When calculating the discriminant of the trinomial, it is concluded that it has no roots since the result is negative. So you only have one solution.
![\bf{ 1^2-4(2)(2)=1-16=-15 < 0 \quad \Longrightarrow \quad x=2 }](https://tex.z-dn.net/?f=%5Cbf%7B%201%5E2-4%282%29%282%29%3D1-16%3D-15%20%3C%200%20%5Cquad%20%5CLongrightarrow%20%5Cquad%20x%3D2%20%7D)
![\large\displaystyle\text{$\begin{gathered}\sf \pmb{3) \ 6x^3+7x^2-9x+2=0 } \end{gathered}$}](https://tex.z-dn.net/?f=%5Clarge%5Cdisplaystyle%5Ctext%7B%24%5Cbegin%7Bgathered%7D%5Csf%20%5Cpmb%7B3%29%20%5C%20%206x%5E3%2B7x%5E2-9x%2B2%3D0%20%7D%20%5Cend%7Bgathered%7D%24%7D)
Synthetic division is used since the equation is of the third degree. The divisors of 2 are 1, -1, 2, -2. So:
| 6 7 9 2
<u>-2 | -12 10 -2</u>
6 -5 1 0
So the factorization is (x+2)(6x²-5x+1)=0 . The quadratic equation is solved by the general formula:
![\bf{ x_{2, 3}&=\dfrac{5\pm \sqrt{(5)^2-4(6)(1)}}{2(6)}=\dfrac{5\pm \sqrt{25-24}}{12}=\dfrac{5\pm 1}{12} }}](https://tex.z-dn.net/?f=%5Cbf%7B%20x_%7B2%2C%203%7D%26%3D%5Cdfrac%7B5%5Cpm%20%5Csqrt%7B%285%29%5E2-4%286%29%281%29%7D%7D%7B2%286%29%7D%3D%5Cdfrac%7B5%5Cpm%20%5Csqrt%7B25-24%7D%7D%7B12%7D%3D%5Cdfrac%7B5%5Cpm%201%7D%7B12%7D%20%7D%7D)
![\large\displaystyle\text{$\begin{gathered}\sf \begin{matrix} x_1=-2&\ \ \ \ \ \ x_{2}=\dfrac{6}{12} \qquad &\ \ \ x_3=\dfrac{4}{12}\\ &\ \ \ x_2=\dfrac{1}{2} \qquad &x_3=\dfrac{1}{3} \end{matrix} \end{gathered}$}](https://tex.z-dn.net/?f=%5Clarge%5Cdisplaystyle%5Ctext%7B%24%5Cbegin%7Bgathered%7D%5Csf%20%20%5Cbegin%7Bmatrix%7D%20x_1%3D-2%26%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20x_%7B2%7D%3D%5Cdfrac%7B6%7D%7B12%7D%20%5Cqquad%20%26%5C%20%5C%20%5C%20x_3%3D%5Cdfrac%7B4%7D%7B12%7D%5C%5C%20%26%5C%20%5C%20%5C%20x_2%3D%5Cdfrac%7B1%7D%7B2%7D%20%5Cqquad%20%26x_3%3D%5Cdfrac%7B1%7D%7B3%7D%20%5Cend%7Bmatrix%7D%20%5Cend%7Bgathered%7D%24%7D)