\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.
Answer:
1.8 undamaged packages
Step-by-step explanation:
3/1000 x 600
Multiply
1.8
Answer:
3
Step-by-step explanation:
The expression is
. To find the value, substitute the values x = 3 and y =-2 then follow order of operations.

Answer:
g(1) = -65; g(n) = g(n-1) -15
Step-by-step explanation:
Using n = 1, 2, 3, we can find the first three terms of the sequence:
g(1) = -50 -15 = -65
g(2) = -50 -15(2) = -80
g(3) = -50 -15(3) = -95
The first term of the arithmetic sequence is -65, so that is g(1). Each next term is 15 less than the one before, so the recursive formula is ...
g(n) = g(n-1) -15
The complete recursive function definition requires both parts:
g(1) = -65
g(n) = g(n-1) -15