Making repeated separations of the various substances in the pitchblende, Marie and Pierre used the Curie electrometer to identify the most radioactive fractions. They thus discovered that two fractions, one containing mostly bismuth and the other containing mostly barium, were strongly radioactive.
<h3>What was surprising about pitchblende?</h3>
Since it was no longer appropriate to call them “uranic rays,” Marie proposed a new name: “radioactivity.”
Even more surprising, Marie next found that a uranium ore called pitchblende contained two powerfully radioactive new elements: polonium, which she named for her native Poland, and radium.
<h3>Why is radium more radioactive than uranium?</h3>
It is 2.7 million times more radioactive than the same molar amount of natural uranium (mostly uranium-238), due to its proportionally shorter half-life.
Learn more about highly radioactive elements here:
<h3>
brainly.com/question/10257016</h3><h3 /><h3>#SPJ4</h3>
Answer:
d. 127 g/mol.
Explanation:
Hello!
In this case, since we have the amount of molecules of this this compound, we are able to compute the moles out there by using the Avogadro's number:

Which correspond to the moles of X2. Then, by using the mass we are able to compute the molar mass of X2:

It means that the atomic mass of X halves the molar mass of X2, which is then d. 127 g/mol.
Best regards!
Answer:
= 61.25 g
= 88.75 g
Explanation:
=
= 50 g
⇒
=
= 1.25 (moles)
2NaOH + H2SO4 ⇒ Na2SO4 + 2H2O
2 : 1 : 1 : 2
1.25 (moles)
⇒
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 98 = 61.25 g
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 142 = 88.75 g
Given that
Mass of water = 65.34 g
Amount of heat = mass of water * specific heat (temperature change
)
= 65.34 g * 4.184 J / g-C ( 21.75-18.43 )C
= 907.63 J
= 0.908 KJ
And
1 cal = 4.186798 J
907.63 J * 1 cal / 4.186798 J =216.78 cal
Or0.218 kcal