Split the figure into 3 shapes: a trapezoid,a rectangle and a triangle
Area of trapezoid
A= 1/2(b1+b2) h
A = 1/2(3 +9)(8)
A = 1/2(12)(8)
A = 48 square units
Area of rectangle:
A = L x W
A = 9 x 8
A = 72 square units
Area of triangle
A = 1/2bh
A = 1/2(3)(8)
A = 12 square units
Area of figure = 48 square units + 72 square units + 12 square units
= 132 square units
Answer
132 square units
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Sum & Difference Identity: tan (A - B) = (tanA - tanB)/(1 + tanA tanB)
Use the Half-Angle Identity: tan (A/2) = (1 - cosA)/(sinA)
Use the Unit Circle to evaluate tan (π/4) = 1
Use Pythagorean Identity: cos²A + sin²A = 1
<u>Proof LHS → RHS</u>
![\text{Given:}\qquad \qquad \qquad\dfrac{2\tan\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)}{1+\tan^2\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)}](https://tex.z-dn.net/?f=%5Ctext%7BGiven%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%5Cdfrac%7B2%5Ctan%5Cbigg%28%5Cdfrac%7B%5Cpi%7D%7B4%7D-%5Cdfrac%7BA%7D%7B2%7D%5Cbigg%29%7D%7B1%2B%5Ctan%5E2%5Cbigg%28%5Cdfrac%7B%5Cpi%7D%7B4%7D-%5Cdfrac%7BA%7D%7B2%7D%5Cbigg%29%7D)
![\text{Difference Identity:}\qquad \dfrac{2 \bigg( \frac{\tan\frac{\pi}{4}-\tan\frac{A}{2}}{1+\tan\frac{\pi}{4}\cdot \tan\frac{A}{2}}\bigg)}{1+ \bigg( \frac{\tan\frac{\pi}{4}-\tan\frac{A}{2}}{1+\tan\frac{\pi}{4}\cdot \tan\frac{A}{2}}\bigg)^2}](https://tex.z-dn.net/?f=%5Ctext%7BDifference%20Identity%3A%7D%5Cqquad%20%5Cdfrac%7B2%20%5Cbigg%28%20%5Cfrac%7B%5Ctan%5Cfrac%7B%5Cpi%7D%7B4%7D-%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%7B1%2B%5Ctan%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%5Cbigg%29%7D%7B1%2B%20%5Cbigg%28%20%5Cfrac%7B%5Ctan%5Cfrac%7B%5Cpi%7D%7B4%7D-%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%7B1%2B%5Ctan%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%5Cbigg%29%5E2%7D)
![\text{Substitute:}\qquad \qquad \dfrac{2 \bigg( \frac{1-\tan\frac{A}{2}}{1+\tan\frac{A}{2}}\bigg)}{1+ \bigg( \frac{1-\tan\frac{A}{2}}{1+\tan\frac{A}{2}}\bigg)^2}](https://tex.z-dn.net/?f=%5Ctext%7BSubstitute%3A%7D%5Cqquad%20%5Cqquad%20%5Cdfrac%7B2%20%5Cbigg%28%20%5Cfrac%7B1-%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%7B1%2B%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%5Cbigg%29%7D%7B1%2B%20%5Cbigg%28%20%5Cfrac%7B1-%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%7B1%2B%5Ctan%5Cfrac%7BA%7D%7B2%7D%7D%5Cbigg%29%5E2%7D)
![\text{Simplify:}\qquad \qquad \qquad \dfrac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}](https://tex.z-dn.net/?f=%5Ctext%7BSimplify%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cdfrac%7B1-%5Ctan%5E2%5Cfrac%7BA%7D%7B2%7D%7D%7B1%2B%5Ctan%5E2%5Cfrac%7BA%7D%7B2%7D%7D)
![\text{Half-Angle Identity:}\qquad \quad \dfrac{1-(\frac{1-\cos A}{\sin A})^2}{1+(\frac{1-\cos A}{\sin A})^2}](https://tex.z-dn.net/?f=%5Ctext%7BHalf-Angle%20Identity%3A%7D%5Cqquad%20%5Cquad%20%5Cdfrac%7B1-%28%5Cfrac%7B1-%5Ccos%20A%7D%7B%5Csin%20A%7D%29%5E2%7D%7B1%2B%28%5Cfrac%7B1-%5Ccos%20A%7D%7B%5Csin%20A%7D%29%5E2%7D)
![\text{Simplify:}\qquad \qquad \dfrac{\sin^2 A-1+2\cos A-\cos^2 A}{\sin^2 A+1-2\cos A+\cos^2 A}](https://tex.z-dn.net/?f=%5Ctext%7BSimplify%3A%7D%5Cqquad%20%5Cqquad%20%5Cdfrac%7B%5Csin%5E2%20A-1%2B2%5Ccos%20A-%5Ccos%5E2%20A%7D%7B%5Csin%5E2%20A%2B1-2%5Ccos%20A%2B%5Ccos%5E2%20A%7D)
![\text{Pythagorean Identity:}\qquad \qquad \dfrac{1-\cos^2 A-1+2\cos A}{2-2\cos A}](https://tex.z-dn.net/?f=%5Ctext%7BPythagorean%20Identity%3A%7D%5Cqquad%20%5Cqquad%20%5Cdfrac%7B1-%5Ccos%5E2%20A-1%2B2%5Ccos%20A%7D%7B2-2%5Ccos%20A%7D)
![\text{Simplify:}\qquad \qquad \qquad \dfrac{2\cos A-2\cos^2 A}{2(1-\cos A)}\\\\.\qquad \qquad \qquad \qquad =\dfrac{2\cos A(1-\cos A)}{2(1-\cos A)}](https://tex.z-dn.net/?f=%5Ctext%7BSimplify%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cdfrac%7B2%5Ccos%20A-2%5Ccos%5E2%20A%7D%7B2%281-%5Ccos%20A%29%7D%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Cdfrac%7B2%5Ccos%20A%281-%5Ccos%20A%29%7D%7B2%281-%5Ccos%20A%29%7D)
= cos A
LHS = RHS: cos A = cos A ![\checkmark](https://tex.z-dn.net/?f=%5Ccheckmark)
The answer to this problem is the letter "A" which is "Multiply by 3, then add 2"
and can be written a N = 3n + 2
At first, we have initial value such n = 1
Then the second value is:
N = 3*1 + 2
N = 5
The third value is:
N = 3*5 + 2
N=17
The next values are:
N = 3*17 + 2
N= 53
The letter "A" is the inductive reasoning to the given sequence.
Answer:
6/-4 (right 6 points on x-axis & down 4 points on y- axis
Step-by-step explanation:
14- 8 6
---------- = ------
5-9 - 4