I'm not really sure what the question is here, because you just gave a statement... but if you are trying to get an expression from words, here is what it would be:
A = 10N
I'm also not sure if "a number" is equal to the same as "a number" at the end, but I'm guessing not. If it is though, and you're trying to find the value of A, the answer would be:
A = 10
<em>*</em><em>Please provide the question you are asking here, not just statements, next time, so that people can help you.</em>
<em />
I hope this helped :)
Answer:
x ≥ 7
Step-by-step explanation:
|x - 7| = x - 7
A. For each absolute, find the intervals
x - 7 ≥ 0 x - 7 < 0
x ≥ 7 x < 7
If x ≥ 7, |x - 7| = x - 7 > 0.
If x < 7, |x - 7| = x - 7 < 0. No solution.
B. Solve for x < 7
Rewrite |x - 7| = x - 7 as
+(x - 7) = x - 7
x - 7 = x - 7
-x + 14 = x
14 = 2x
x = 7
7 ≮7. No solution
C. Solve for x ≥ 7
Rewrite |x - 7| = x - 7 as
+(x - 7) = x - 7
x - 7 = x - 7
True for all x.
D. Merge overlapping intervals
No solution or x ≥ 7
⇒ x ≥ 7
The diagram below shows that the graphs of y = |x - 7| (blue) and of y = x - 7 (dashed red) coincide only when x ≥ 7.
This is a geometric sequence because each term is twice the value of the previous term. So this is what would be called the common ratio, which in this case is 2. Any geometric sequence can be expressed as:
a(n)=ar^(n-1), a(n)=nth value, a=initial value, r=common ratio, n=term number
In this case we have r=2 and a=1 so
a(n)=2^(n-1) so on the sixth week he will run:
a(6)=2^5=32
He will run 32 blocks by the end of the sixth week.
Now if you wanted to know the total amount he runs in the six weeks, you need the sum of the terms and the sum of a geometric sequence is:
s(n)=a(1-r^n)/(1-r) where the variables have the same values so
s(n)=(1-2^n)/(1-2)
s(n)=2^n-1 so
s(6)=2^6-1
s(6)=64-1
s(6)=63 blocks
So he would run a total of 63 blocks in the six weeks.
Answer:
a+b=b+a
Step-by-step explanation:
so 7+4=12 and 4+7=12 so addition is commutative