Direct variation is y = kx, where k is the constant of variation.
But now it says y varies directly with x2 (or 2x), so now the x in the equation is 2x.
The equation is y = k(2x)
Now you find k.
y = 96 when x = 4.
(96) = k(2*4)
96 = k(8)
k = 12
The equation is now y = 12(2x)
To find the value of y when x=2, plug 2 into the equation you made.
y = 12(2*2)
y = 48
_________________
Now it's with a "quadratic variation," which is the same thing except x is squared.
The equation is y = kx^2
But y varies directly with x2 (same thing as 2x), so now it's y = k(2x)^2.
Now you find k by substituting y and x values that were given.
y = 180 when x = 6
(180) = k(2*6)^2
180 = k(12)^2
180 = k(144)
k = 1.25
k, 1.25, is the constant of variation.
Answer:
x | x ≥ 0 and x ≤ 8
Step-by-step explanation:
The domain of the function is defined as the possible x values that can be used in this function. Now, taking a look at the given graph, we would find that the line starts from x = 0 and continues taking x values till it reaches x = 0This means that for this function, we are allowed to use x values that are greater than or equal to zero and less than or equal to 8Therefore, the domain is any x value greater than or equal to zero and less than or equal to 8
13. AC=6
sorry it's just a guess i'm like 99% sure tho