Answer:
2.5% of IQ scores are no more than 65
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 95
Standard deviation = 15
Using the empirical rule, what percentage of IQ scores are no more than 65?
65 = 95 - 2*15
So 65 is two standard deviations below the mean.
By the Empirical Rule, 95% of the measures are within 2 standard deviation of the mean. Of those 5% which are not, 2.5% are more than 2 standard deviations above the mean and 2.5% are more than 2 standard deviations below the mean.
So 2.5% of IQ scores are no more than 65
Simplify ( 5 x 3-x+14)-(3 x 2-9 x + 4)= 5x3 - 3x2+8x+10
Answer:
The geometric mean of the measures of the line segments AD and DC is 60/13
Step-by-step explanation:
Geometric mean: BD² = AD×DC
BD = √(AD×DC)
hypotenuse/leg = leg/part
ΔADB: AC/12 = 12/AD
AC×AD = 12×12 = 144
AD = 144/AC
ΔBDC: AC/5 = 5/DC
AC×DC = 5×5 = 25
DC = 25/AC
BD = √[(144/AC)(25/AC)]
BD = (12×5)/AC
BD= 60/AC
Apply Pythagoras theorem in ΔABC
AC² = 12² + 5²
AC² = 144+ 25 = 169
AC = √169 = 13
BD = 60/13
The geometric mean of the measures of the line segments AD and DC is BD = 60/13
Answer:
second one
Step-by-step explanation:
Because when you try to remove the brackets then you should multiply coefficient of x and coefficient of y by 2
So it will be 2x+18y
2*9=18
Answer:
so whats u r question
Step-by-step explanation: