Answer:
Factors of number 52
Factors of 52: 1, 2, 4, 13, 26 and 52.
Negative Factors of 52: -1, -2, -4, -13, -26 and -52.
Prime Factors of 52: 2, 13.
Prime Factorization of 52: 2 × 2 × 13 = 22 × 13.
Sum of Factors of 52: 98.
Answer:
16 + 4n
3(x - 8)
(5 × y) - 3
Step-by-step explanation:
16 increased by 4 times a number:
16 + 4n
Three times the difference of x and 8:
3(x - 8)
3 less than the product of 5 and y:
(5 × y) - 3
Answer:
Step-by-step explanation:
a_1 = 15
a_2 = a_1 - 3
a_2 = 15 - 3
a_2 = 12
a_3 = a_2 - 3
a_3 = 12 - 3
a_3 = 9
a_4 = a_3 - 3
a_4 = 9 - 3
a_4 = 6
a_5 = 3
a_6 = 0 I'm leaving these last two to expand
a_n = a1 - (n - 1)*d
a_n = 15 - (n - 1)*3
a_n = 15 - 3n + 3
a_n = 18 - 3n
Example
a_6 = 18 - 3*6
a_6 = 0
Problem B
t(1) = 108
t(1 + 1) = 1/3 * 108
t(2) = 36
t(3) = 1/3 * t2
t(3) = 1/3 * 36
t(3) = 12
t(4) =1/3 (t(3))
t(4) = 1/3 * 12
t(4) = 4
t(5) = t4 / 3
t(5) = 4 / 3
t(5) = 1.3333333
So the explicit definition is
t(n) = 108 (1/3)^(n - 1) You could simplify this a little bit by realizing that 108 is made of three 3s.
t(n) = 4 * 3^3 * (1/3)^(n - 1)
t(n) = 4 * (1/3) ^ (n - 4)
Example
t(5) = 108 (1/3)^4
t(5) = 108(1/81)
t(5) = 1.3333333
And using the simplified formula, you get.
t(5) = 4 * (1/3)^1
t(5) = 1.333333 which is the same thing as the original result.
Answer:
No Options
∠QOB=45º
Step-by-step explanation:
we have that: point O=Incenter, sides S, Q, R they form right angles with the point O, angle OBC = 15º and angle OCR=30º, find angle QOB
we know that the sum of all the internal angles of a triangle is 180º, so
α =180-30-15-90=45º and β = 180-90-α → β = 180-90-45 =45º,
Finally β=∠QOB=45º
Answer:
The absolute maximum is
and the absolute minimum value is 
Step-by-step explanation:
Differentiate of
both sides w.r.t.
,


Now take 



![\Rightarrow 1-2\sin ^2t =\sin t \quad \quad [\because \cos 2t = 1-2\sin ^2t]](https://tex.z-dn.net/?f=%5CRightarrow%201-2%5Csin%20%5E2t%20%3D%5Csin%20t%20%20%5Cquad%20%5Cquad%20%20%5B%5Cbecause%20%5Ccos%202t%20%3D%201-2%5Csin%20%5E2t%5D)






In the interval
, the answer to this problem is 
Now find the second derivative of
w.r.t.
,

![\Rightarrow \left[f''(t)\right]_{t=\frac {\pi}6}=-2\times \frac {\sqrt 3}2-4\times \frac{\sqrt 3}2=-3\sqrt 3](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cleft%5Bf%27%27%28t%29%5Cright%5D_%7Bt%3D%5Cfrac%20%7B%5Cpi%7D6%7D%3D-2%5Ctimes%20%5Cfrac%20%7B%5Csqrt%203%7D2-4%5Ctimes%20%5Cfrac%7B%5Csqrt%203%7D2%3D-3%5Csqrt%203)
Thus,
is maximum at
and minimum at 
![\left[f(t)\right]_{t=\frac {\pi}6}=2\times \frac {\sqrt 3}2+\frac{\sqrt 3}2=\frac{3\sqrt 3}2\;\text{and}\;\left[f(t)\right]_{t=\frac{\pi}2}= 2\times 0+0=0](https://tex.z-dn.net/?f=%5Cleft%5Bf%28t%29%5Cright%5D_%7Bt%3D%5Cfrac%20%7B%5Cpi%7D6%7D%3D2%5Ctimes%20%5Cfrac%20%7B%5Csqrt%203%7D2%2B%5Cfrac%7B%5Csqrt%203%7D2%3D%5Cfrac%7B3%5Csqrt%203%7D2%5C%3B%5Ctext%7Band%7D%5C%3B%5Cleft%5Bf%28t%29%5Cright%5D_%7Bt%3D%5Cfrac%7B%5Cpi%7D2%7D%3D%202%5Ctimes%200%2B0%3D0)
Hence, the absolute maximum is
and the absolute minimum value is
.